C4.3 Functional Analytic Methods for PDEs: Q2(b) - 2018

Luc Nguyen

University of Oxford

May 2020

Given:

- $\Omega \subset \mathbb{R}^n$: bounded Lipschitz domain.
- $u \in H^2(\Omega)$.

Want:

- If n = 3, then u is Hölder continuous in $\overline{\Omega}$.
 - Is the above true for n = 4?

n = 3: Sobolev + Morrey's embedding

We have u, Du ∈ W^{1,2}(Ω) and so u, Du ∈ L^{2*}(Ω) = L⁶(Ω).
Hence u ∈ W^{1,6}(Ω) and so u ∈ C^{0,¹/₂}(Ω̄).

n = 4: Limiting case of Sobolev embedding

- We now have $u, Du \in L^{2^*}(\Omega) = L^4(\Omega)$, i.e. $u \in W^{1,4}(\Omega)$. This is the threadhold case in dimension 4.
- Claim u need not be continuous. Consider u(x) = | ln |x||^α for some α > 0 in Ω = B_R for some R < 1. Clearly u is unbounded in Ω. If we manage to get α such that u ∈ H²(Ω), we are done. We compute

$$\int_{\Omega} |u|^2 dx = \int_0^R r^3 |\ln r|^\alpha dr < \infty.$$

n = 4: L^2 norm of u and Du

$$\int_{\Omega} |u|^2 dx = \int_0^R r^3 |\ln r|^{2\alpha} dr < \infty.$$

$$\int_{\Omega} |Du|^2 dx = \int_0^R |\partial_r u|^2 r^3 dr = \alpha^2 \int_0^R r |\ln r|^{2\alpha - 2} dr < \infty.$$

۰

n = 4: L^2 norm of $D^2 u$

۲

$$\int_{\Omega} |D^2 u|^2 dx = \int_0^R (|\partial_r^2 u|^2 + \frac{3}{r^2} |\partial_r u|^2) r^3 dr$$

= $\alpha^2 \int_0^R \frac{1}{r} \Big[|\ln r|^{\alpha - 1} + (\alpha - 1)|\ln r|^{\alpha - 2} \Big]^2 dr$
+ $3\alpha^2 \int_0^R \frac{1}{r} |\ln r|^{2\alpha - 2} dr$
 $\leq C(\alpha) \int_0^R \frac{1}{r} |\ln r|^{2\alpha - 2} dr.$

This is bounded provided $2\alpha - 2 < -1$, i.e. $\alpha < 1/2$.