C4.3 Functional Analytic Methods for PDEs: Q1(b)(c) - 2019

Luc Nguyen
University of Oxford

May 2020

Q1(b)(c) - 2019

Given:

- $\Omega \subset \mathbb{R}^{n}$: bounded Lipschitz domain.
- $\bar{W}^{1, p}(\Omega)=\left\{u \in W^{1, p}(\Omega): \int_{\Omega} u d x=0\right\}$.

Want:

(D) For $1 \leq p<n$,

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq C\|D u\|_{L^{p}(\Omega)} \text { for all } u \in \bar{W}^{1, p}(\Omega)
$$

(c) (1) For $n=3$ and $2<q<6$,

$$
\begin{aligned}
& \|u\|_{L^{q}(\Omega)} \leq C^{\prime}\|u\|_{L^{2}(\Omega)}^{\frac{6-q}{2 q}}\|D u\|_{L^{2}(\Omega)}^{\frac{3(q-2)}{2 q}} \text { for all } u \in \bar{W}^{1,2}(\Omega) . \\
& \quad * * * \text { TYPO as }\|u\|_{L^{2}(\Omega)}^{\frac{3(q-2)}{2 q}}\|D u\|_{L^{2}(\Omega)}^{\frac{6-q}{2 q}} * * *
\end{aligned}
$$

(1) Deduce that, for any $\varepsilon>0$,

$$
\|u\|_{L^{q}(\Omega)} \leq \varepsilon\|D u\|_{L^{2}(\Omega)}+C_{\varepsilon}^{\prime \prime}\|u\|_{L^{2}(\Omega)} \text { for all } u \in W^{1,2}(\Omega)
$$

Part (b): Proof by extension

- As in the course, we reduce to the whole space setting. There is a bounded linear extension $E: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right)$.
- By Gargliardo-Nirenberg's inequality, we have for $u \in W^{1, p}(\Omega)$ that

$$
\|u\|_{L^{p^{*}}(\Omega)} \leq\|E u\|_{L^{p^{*}}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|E u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C\|E\|\|u\|_{W^{1, p}(\Omega)}
$$

- By Poincaré-Sobolev's inequality, we have for $u \in \bar{W}^{1, p}(\Omega)$ that

$$
\|u\|_{L^{p}(\Omega)} \leq C\|D u\|_{L^{p}(\Omega)}
$$

and so

$$
\|u\|_{W^{1, p}(\Omega)} \leq C\|D u\|_{L^{p}(\Omega)}
$$

- Chaining together we are done.

Part (c)(i): Interpolation

- Interpolation inequality: $\|u\|_{L^{q}(\Omega)} \leq\|u\|_{L^{r}(\Omega)}^{\theta}\|u\|_{L^{s}(\Omega)}^{1-\theta}$ if $q \in[r, s]$ and θ is such that $\frac{1}{q}=\frac{\theta}{r}+\frac{1-\theta}{s}$.
- This is a consequence of Hölder's inequality. We start by writing

$$
\|u\|_{L^{q}(\Omega)}^{q}=\int_{\Omega}|u|^{q} d x=\int_{\Omega} u^{q \theta} u^{q(1-\theta)} d x
$$

- Observe that $\frac{1}{q}=\frac{\theta}{r}+\frac{1-\theta}{s}$ implies $1=\frac{q \theta}{r}+\frac{q(1-\theta)}{s}$. We can thus use Hölder's inequality with exponent $\frac{r}{q \theta}$ and $\frac{s}{q(1-\theta)}$ to obtain

$$
\|u\|_{L^{q}(\Omega)}^{q} \leq\left(\int_{\Omega} u^{r} d x\right)^{\frac{q \theta}{r}}\left(\int_{\Omega} u^{s} d x\right)^{\frac{q(1-\theta)}{s}}=\|u\|_{L^{r}(\Omega)}^{q \theta}\|u\|_{L^{s}(\Omega)}^{q(1-\theta)}
$$

Part (c)(i): Conclusion

- Recall that we are dealing with $n=3$ and $\bar{W}^{1,2}(\Omega)$, i.e. $p=2$. So $p^{*}=6$. By (b), we have

$$
\|u\|_{L^{6}(\Omega)} \leq C\|D u\|_{L^{2}(\Omega)} \text { for all } u \in \bar{W}^{1,2}(\Omega)
$$

- By interpolation inequality, we have $\|u\|_{L^{q}(\Omega)} \leq\|u\|_{L^{2}(\Omega)}^{\theta}\|u\|_{L^{6}(\Omega)}^{1-\theta}$ where $\frac{1}{q}=\frac{\theta}{2}+\frac{1-\theta}{6}$, i.e. $\theta=\frac{6-q}{2 q}$.
- Putting together we get

$$
\|u\|_{L^{q}(\Omega)} \leq C\|u\|_{L^{2}(\Omega)}^{\frac{6-q}{2 q}}\|D u\|_{L^{2}(\Omega)}^{\frac{3(q-2)}{2 q}} \text { for all } u \in \bar{W}^{1,2}(\Omega) .
$$

Part (c)(ii): Young's inequality

- Young's inequality: $a b \leq \frac{1}{p} a^{p}+\frac{1}{p^{\prime}} b^{p^{\prime}}$ for $1<p<\infty$.
- Suppose that $u \in W^{1,2}(\Omega)$. Let $[u]_{\Omega}=\frac{1}{|\Omega|} \int_{\Omega} u d x$ be the average of u and $\bar{u}=u-[u]_{\Omega}$ so that $\bar{u} \in \bar{W}^{1,2}(\Omega)$.
- By (c)(i),

$$
\|\bar{u}\|_{L^{q}(\Omega)} \leq C\|\bar{u}\|_{L^{2}(\Omega)}^{\frac{6-q}{2 q}}\|D u\|_{L^{2}(\Omega)}^{\frac{3(q-2)}{2 q}} .
$$

- Applying Young's inequality with $p=\frac{2 q}{3(q-2)}$, we obtain

$$
\|\bar{u}\|_{L^{q}(\Omega)} \leq \varepsilon\|D u\|_{L^{2}(\Omega)}+C_{\varepsilon}\|\bar{u}\|_{L^{2}(\Omega)} .
$$

- By triangle inequality,

$$
\begin{aligned}
\|u\|_{L^{q}(\Omega)} & \leq \varepsilon\|D u\|_{L^{2}(\Omega)}+C_{\varepsilon}\|\bar{u}\|_{L^{2}(\Omega)}+C \underbrace{\left|u_{\Omega}\right|}_{\leq C\|u\|_{L^{2}(\Omega)}} \\
& \leq \varepsilon\|D u\|_{L^{2}(\Omega)}+C_{\varepsilon}\|u\|_{L^{2}(\Omega)} .
\end{aligned}
$$

