C4.3 Functional Analytic Methods for PDEs - Sheet 4 of 4

Read Chapter 4 and prove the few statements whose proofs were left out as exercises. (Not to be handed in.)

Do:

- **Q1.** Let X be a reflexive Banach space, $A \subset X$ be a weakly closed, non-empty subset, and $I: A \to \mathbb{R}$ be continuous. Suppose that the following conditions hold.
 - I is weakly lower semi-continuous: for every sequence $(x_m) \subset A$ converging weakly to x it holds that

$$I(x) \le \liminf_{m \to \infty} I(x_m).$$

• I is coercive: $I(x) \to \infty$ whenever $||x|| \to \infty$, i.e. for every N > 0, there exists R such that $I(x) \ge N$ for every $x \in A$ with ||x|| > R.

Let

$$\alpha = \inf\{I(x) : x \in U\} \in [-\infty, \infty).$$

 $(\alpha < \infty \text{ as } U \text{ is non-empty.})$

Show that if $(x_m) \subset A$ is a minimizing sequence for I (i.e. $I(x_m) \to \alpha$), then (x_m) is bounded and hence has subsequence (x_{m_j}) which converges weakly to some $x \in A$. Deduce that x is a minimizer of I, i.e. $I(x) \leq I(z)$ for every $y \in A$.

- **Q**2. Let X be a normed vector space.
 - (i) Let $(y_m) \subset X$ converges weakly to $y \in X$. By applying Mazur's theorem to the closed convex hull of (y_m) , show that there is a sequence $m_j \to \infty$ and coefficients $c_1^{(j)}, \ldots, c_{m_j}^{(j)} \in [0, 1]$ such that $\sum_{j=1}^{m_j} c_i^{(j)} = 1$ and

$$\tilde{y}_j = \sum_{i=1}^{m_j} c_i^{(j)} y_i \text{ converges strongly to } y.$$

(ii) Let K be a closed, convex, non-empty subset of X and $I : K \to \mathbb{R}$ be continuous. Suppose that I is convex, i.e.

$$I((1-t)x_0 + tx_1) \le (1-t)I(x_0) + tI(x_1) \text{ for all } x_0, x_1 \in K, t \in [0,1].$$
(†)

Show that I is weakly lower semi-continuous.

Q3. Let Ω be a bounded Lipschitz domain in \mathbb{R}^n , $1 \leq p \leq \frac{n+2}{n-2}$, and consider, for a given $u_0 \in H^1(\Omega)$ the boundary value problem

$$\begin{cases} \Delta u = |u|^{p-1}u & \text{in } \Omega, \\ u = u_0 & \text{on } \partial\Omega. \end{cases}$$
(*)

- (i) Formulate the notion of H^1 weak solution to the boundary value problem (*). You may need to use Gagliardo-Nirenberg-Sobolev's embedding theorem to justify the convergence of the integral corresponding to $|u|^{p-1}u$.
- (ii) Using Gagliardo-Nirenberg-Sobolev's embedding theorem, show that the variational energy

$$I[u] = \int_{\Omega} \left[\frac{1}{2} |Du|^2 + \frac{1}{p+1} |u|^{p+1} \right]$$

is well-defined for $u \in H^1(\Omega)$. Furthermore, show that I is strictly convex (i.e. I is convex and the convexity inequality (†) is attained if and only if x = y or t = 0 or t = 1).

- (iii) Show that I has a unique minimizer in the set $X := \{ u \in H^1(\Omega) : u u_0 \in H^1_0(\Omega) \}.$
- (iv) Differentiating under the integral sign, deduce that (*) has a weak solution. (It is also true that the weak solution is unique, but this is harder.)
- **Q**4. Let Ω be a bounded domain in \mathbb{R}^n and suppose $b_i \in L^{\infty}(\Omega)$ satisfies $\partial_i b_i \leq 0$ in the weak sense, i.e.

$$\int_{\Omega} b_i \partial_i \varphi \ge 0 \text{ for all } \varphi \in C_c^{\infty}(\Omega).$$

Consider the operator

$$Lu = -\Delta u + b_i \partial_i u$$

and let B be the associated bilinear form. Show that B is coercive, namely there exists C > 0 such that $B(w, w) \ge C \|w\|_{L^2(\Omega)}^2$ for every $w \in C_c^{\infty}(\Omega)$.

Q5. Let Ω be a Lipschitz bounded domain of \mathbb{R}^n . Suppose that $a_{ij}, b_i, c \in L^{\infty}(\Omega)$, (a_{ij}) is uniformly elliptic and consider the operator

$$Lu = -\partial_i (a_{ij}\partial_j u) + b_i \partial_i u + cu.$$

Suppose that uniqueness holds for L: the only function in $H_0^1(\Omega)$ satisfying Lu = 0 in Ω in the weak sense is the trivial function. We knew that for every $f \in L^2(\Omega)$, there exists a unique $u \in H_0^1(\Omega)$ such that Lu = f in Ω in the weak sense. We denote the map sending f to u as A so that $A : L^2(\Omega) \to H_0^1(\Omega)$ is linear. The aim of this exercise is to show the boundedness of A.

(i) Testing the equation Lu = f against u, show that there exists $C_1 > 0$ independent of f such that

$$||Af||_{H^1(\Omega)} \le C_1(||f||_{L^2(\Omega)} + ||Af||_{L^2(\Omega)})$$
 for all $f \in L^2(\Omega)$.

- (ii) Use (i) to show that if A is unbounded, then there exist $f_m \in L^2(\Omega)$ and $u_m \in H^1_0(\Omega)$ such that $Lu_m = f_m$ and $1 = ||u_m||_{L^2(\Omega)} \ge m ||f_m||_{L^2(\Omega)}$. Show further that $f_m \to 0$ in $L^2(\Omega)$ and (u_m) is bounded in $H^1(\Omega)$.
- (iii) With the same notation as in (ii) and using Rellich-Kondrachov's compactness theorem, show that there is a subsequence (u_{m_j}) which converges weakly in $H^1(\Omega)$ and strongly in $L^2(\Omega)$ to some function $u \in H^1_0(\Omega)$ which satisfies Lu = 0. Deduce a contraction from this convergence and conclude the argument.
- **Q**6. Let Ω be a bounded Lipschitz domain in \mathbb{R}^n . Define an operator $K : L^2(\Omega) \to L^2(\Omega)$ as follows. For every $f \in L^2(\Omega)$, we knew that there exists a unique $u \in H^1_0(\Omega)$ such that $-\Delta u = f$ in Ω in the weak sense. We assign Kf = u.
 - (i) Show that K is a compact bounded linear operator.
 - (ii) Let S be the restriction of K to $H_0^1(\Omega)$. Show that S is a compact bounded linear operator from $H_0^1(\Omega)$ into itself.