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I'm very grateful to the previous lecturer of this course, David Seifert, who devel-
oped the previous version of these notes, and allowed me to use them. Please send
comments, corrections, clarifications etc to me at stuart.white@maths.ox.ac.uk.

1 Introduction

Functional analysis is the study of normed (or, more generally, of topological) vec-
tor spaces and the continuous linear maps between them. This course builds on
what is covered in introductory courses on functional analysis, such as B4 Func-
tional Analysis I and II taken by third-year students at Oxford, and in particular
we will extend the theory of normed vector spaces and bounded linear operators
developed there. Some functional analysts are primarily interested in what might
be called geometric properties of Banach spaces, others in properties of operators
acting on these spaces. In fact, the two strands are connected and we will deal with
elements of both. Functional analysis makes connections right across mathemat-
ics; there are many applications, for instance to differential equations, probability,
mathematical physics, numerical analysis, as well as strong connections to topics in
pure mathematics: the Feldholm index we begin in Section [[2] provides the analytic
side of the celebrated Atiyah-Singer index theorem, various approximation proper-
ties in geometric group theory are studied using tools from functional analysis, and
there are strong links between Banach spaces and subjects like metric geometry and
descriptive set theory.

Our emphasis here will nevertheless be mainly on the abstract theory, both
to avoid excessive overlap with other courses and to keep the prerequisites to a
minimum. We will illustrate the abstract theory by considering various specific
examples, both in the lectures and especially in the problem sheets.

There are many good books on functional analysis. Among those particularly
relevant to this course are the following;:

[1] B. Bollobas, Linear Analysis: An Introductory Course, CUP, 1999.
[2] H. Brezis, Functional Analysis, Sobolev Spaces and PDEs, Springer, 2011.

[3] N.L. Carothers, A Short Course on Banach Space Theory, CUP, 2004.
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4] J. Conway, A Course in Functional Analysis, Springer, 2007.

5] M. Fabian et al., Funct. Analysis and Infinite-Dim. Geometry, Springer, 2001.

[4]
[5]
[6] R.E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.
[7] W. Rudin, Functional Analysis, McGraw-Hill, 1991.
[8] A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, Wiley, 1980.
Perhaps the most useful of these is [5]. If your college library doesn’t already own a
copy, you might consider asking it to buy one.
Prerequisites

e Basics of metric spaces, particularly aspects relating to completeness.

e Basics of topological spaces, closures and interiors, and in particular compact-
ness

e Fundamentals of linear algebra, bases, quotient spaces.

e Normed spaces and Banach spaces. Definitions and fundamental examples.
Familiarity with Hilbert spaces, and their fundamental properties

e Operators between normed spaces, Continuity and boundedness, Completeness
of B(X,Y) when Y is complete.

e The Baire category theoremﬁ
e Open mapping theorem, closed graph theorem, and inverse mapping theoremﬂ

e Measure theory. We use this in Section [8 and a couple of associated examples
(and an example on the last example sheet). You’ll want enough background
for this section, but it’s otherwise not essential.

There is a preliminary reading document on the course homepage, prepared by
Richard Haydorﬁ which contains more details on this background material, including
many complete proofs.

We will use Tychonoff’s theorem that the product of compact spaces is compact as a black box
in the course. This is equivalent to the axiom of choice, and not in my list of basic facts about
topological spaces.

2Most of this course will focus on the structure of Banach spaces and the operators between
them, but it’ll be useful to contrast the behaviour with known results for Hilbert spaces, such as
the projection theorem: there is an orthogonal projection onto a closed subspace of Hilbert space.

3If you’ve not seen this before, this shouldn’t be a problem. We will state it, and use it once in
Section 2lin order to show that Hamel bases on Banach spaces are necessarily uncountable. Baire’s
category theorem is also often used to deduce the open mapping theorem and closed graph theorem.
But this isn’t necessary for the course.

4Ideally you’ve seen these before, but for our course the statements will suffice. I invite you to
deduce the open mapping theorem from Baire’s category theorem in Sheet 0, and we will see the
equivalence of these three classical theorems in sheet 2 (and they’re also equivalent to the uniform
boundeness principle). One can also prove these theorems directly; indeed as noted in [3, Theorem
5.11 and the discussion which follows] — a good source for a direct proof of uniform boundedness
— this is how Banach and Steinhaus most likely first proved the uniform boundedness principle.

5 Another former lecturer for this course



2 Normed vector spaces

Let X be a vector space over the field IF. Throughout this course F will be either R
or C. We will specify the field when it matters; when we don’t it is to be understood
that the vector space is either real or complex. If several normed vector spaces are
introduced at the same time, they will always be over the same field. Unless the
possibility that X = {0} is explicitly mentioned we assume that X # {0}.

Recall that a norm on X is a map || - ||: X — [0, 00) such that

e |z|| =0 if and only if z = 0;
o || Az|| = |A|||z]| for all A € F, z € X;
o llz+yll <zl + [yl for all 2,y € X.

In particular, any norm || - || induces a metric d: X x X — [0, 00) given by d(z,y) =
llx =y, z,y € X. We call a vector space equipped with a norm a normed vector
space. A normed vector space X is said to be a Banach space if the metric space
(X,d) is complete. Recall that a complete subspace of a normed vector space is
closed and that a closed subspace of a Banach space is complete.

As always in mathematics, we should have a range of examples to hand. For
now one should have the first three of the following examples to hand.

e n-dimensional Euclidian space £2, and the various equivalent norms we could
put on these spaces to obtain /5, for 1 < p < 0o

e The standard spaces of infinite sequences ¢2, ¢! and ¢, ¢y, and the more
general spaces /P for 1 < p < oco.

e C(K) for a compact Hausdorff K (think K = [0, 1]);
o LP(Q, X, ) for 1 < p < oo, and a measure space (Q,E,H)E

Our notation for open and closed balls will be as follows. For o € X and r > 0,

we let
Bx(zg,7) = {x € X :|lx—azo < r}

denote the closed ball, and we let
B% (xg,7) = {w € X :|lx—zo < 1"}

denote the open ball. For brevity we let Bx(r) = Bx(0,7) and B%(r) = B%(0,r).
We also write By = Bx(1) and B = B% (1) for the unit balls, and we denote the
unit sphere {x € X : ||| = 1} of X by Sx.

Recall that two norms || - || and ||| - || on X are said to be equivalent if there exist
constants ¢, C' > 0 such that

cllzll < fllzllf < Cllzfl, = e X.

We already know that if X is finite-dimensional then all norms are equivalent, and
in particular X is complete with respect to the metric induced by any norm. In

SWe will look at these spaces in Section Bl It’s not our purpose to give a course on measure
theory, so we’ll keep the amount of measure theory prerequistes to a minimum.



fact, if dimX = n for n € N then X is isomorphic to F"” with any particular
normE Here and in what follows isomorphic means linearly homeomorphic. If two
normed space X and Y are isomorphic we occasionally write X ~ Y, and if they are
isometrically isomorphic we write X = Y. For infinite-dimensional vector spaces it
is no longer true that all norms are equivalent (and even two complete norms may
be non-equivalent; see Problem Sheet 1),

On the subject of dimension, recall that dim X is the cardinality of any linearly
independent spanning set of X. Such a set is called a Hamel basis for X[ Thus a
subset B of X is a Hamel basis if and only if every x € X can be written uniquely

in the form .
Tr = Z )\kxk
k=1

for some n € N, Aq,.... A\, € F and x1,...,2, € B. In the general setting, the
existence of Hamel bases relies on the axiom of choice, in the form of Zorn’s lemma
(often the way that the axiom of choice is used in practise).

A partial ordered set (poset) is a set P together with an order < which is reflexive,
transitive and antisymmetricﬁ The example of most relevance to us, will be a family
of subsets of a given set, ordered by inclusion. An element x in a poset P is mazimal
if x <y implies that y = 29 A chain C in a poset P is a subset of P which is
totally ordered, i.e. any two elements are comparable.

Theorem 2.1 (Zorn’s Lemma). Let X be a non-empty poset such that every chain
has an upper bound. Then X has a mazimal element.

Remark 2.2. Zorn’s Lemma is equivalent to the Axiom of Choice; see for instance
B1.2 Set Theory and C1.4 Axiomatic Set Theory for details. Note that there is no
claim about uniqueness of the maximal element. Not all mathematicians accept the
Axiom of Choice, so it is good practice to be aware of which results depend on it
and which don’t

Proposition 2.3. Fvery non-zero vector space X admits a Hamel basis.

PRrROOF. Let P be the collection of all linearly independent subsets of X ordered
by inclusion (this is certainly non-empty) and suppose that C C P is a chain. We
claim that A = (Jc C is linearly independent, which requires us to check that any
finite collection of vectors in A forms a linearly independent set. So suppose that
{z1,...,2,} C A for some n € N. Then there exist Cy € C such that z; € Cj,

"This is essentially proved by choosing a basis, and using this to show that X is isomorphic to
£; see [5, Proposition 1.22], for example.

8In the context of linear algebra, a Hamel basis would simply be called a basis. But in the study
of functional analysis, such bases are not so useful, and we prefer to reserve the term basis for things
like orthogonal bases in a Hilbert space, where we can write every element as a norm convergent
infinite linear combination of the basis. We will return briefly to the topic of Schauder bases, the
appropriate notion of a basis for a Banach space in Section [T3]

%if x,y € P have x < y and y < z, then = = y.

ONote the terminology maximal, rather than maximum. The latter would suggest uniqueness,
and in general maximal elements need not be unique.

1With that said, the axiom of choice is not really controversial within functional analysis and
normally assumed without comment. Fundamental results in the field, such as the Hahn-Banach
theorem and the Banach-Alaoglu Theorem



1 <k < n. Since C is a chain it is easy to see that there exists m € {1,...,n} such
that Jj_, Cx = Cy,. Since Cy, € P the vectors 1, ..., z, are linearly independent.

By Zorn’s lemma P has a maximal element, say B. Let Y = span B and suppose
that x € X. If x € Y then the set B’ = B U {z} is linearly independent. Moreover,
B C B’ and hence by maximality B = B’, which is a contradiction. Thus Y = X
and hence B is the required Hamel basis. O

Remark 2.4. The proof shows slightly more, namely that for every linearly inde-
pendent subset A of X there exists a Hamel basis B for X such that A C B. To see
this replace P by those linearly independent subsets of X containing A.

The main use we will have for Hamel bases is producing unbounded linear maps;
one of the reasons that they’re not so useful elsewhere in functional analysis is that
(in the case of complete spaces) they're always too large. Precisely, as a consequence
of the Baire category theorem, any Hamel basis for an infinite dimensional Banach
space is necessarily uncountable.

Theorem 2.5 (Baire’s Category Theorem). Let (X,d) be a complete metric
spac and suppose that U,, n € N, are dense open subsets of X. Then ﬂn21 U, is
also dense in X.

Proposition 2.6. Let X be an infinite-dimensional Banach space. Then any Hamel
basis for X must be uncountable.

PROOF. Suppose, for the sake of a contradiction, that there exists a countable Hamel
basis B = {z,, : n > 1} for X and let F,, = span{zy : 1 <k <n}, n > 1. Then each
of the spaces F}, is finite-dimensional and hence complete, and in particular each F,
is closed in X. Let U, = X \ F,,, n > 1. Then each U, is open in X and moreover

N U.=x\JF.=0.

n>1 n>1

By the Baire Category Theorem there exists n > 1 such that U, is not dense in
X, which is equivalent to saying that Fj, has non-empty interior. Suppose that
z € X and € > 0 are such that B$ (z,e) C F,. Since F,, is a vector space and in
particular closed under translations, it follows that B (¢) C F,, and hence X C F),.
In particular, we have dim X < n, which is a contradiction. ]

Remark 2.7. This result shows that even if X is a separable Banach space it cannot
have a countable Hamel basis. We will see in Section that a more appropriate
notion of basis in the context of Banach spaces is that of a Schauder basis.

Example 2.8. Let X be the space of all polynomials x: [0, 1] — F with coefficients
in IF, endowed with the supremum norm |[z[/oc = supy<;<; |2(t)|, + € X. Then X
is a subspace of the Banach space C([0,1]) of all scalar-valued continuous functions

12The Baire category theorem also works for locally compact Hausdorff spaces; see [7, 2.2], and
provides a notion of typical in the setting of Baire spaces, i.e. those spaces for which the Baire
category theorem holds. That is we can view a property as holding generically if it holds on a set
containing a dense countable intersection of open sets. The point is that countable intersections of
generic properties remain generic — this way of thinking heads towards descriptive set theory, and
gives us a framework for discussing, for example, typical properties of representations.



defined on [0,1]. But X is not closed, for otherwise it would be complete and by
Proposition [2.6] this cannot be the case, since the set {z,, : n > 0}, where z,(t) = t"
for n > 0 and 0 <t <1, is a countable Hamel basis for X. In fact, we know from
the Weierstrass Approximation Theorem that X is dense in C(]0, 1]).

Recall that any vector space X has an associated algebraic dual space X' con-
sisting of all linear functionals f: X — F. If X is a normed vector space it is
natural to restrict oneself to the class of continuous, or equivalently bounded, lin-
ear functionals f, which are those satisfying |f(z)| < C|z|| for some C > 0 and
all x € X. We write X* for the (topological) dual space consisting of all bounded
linear functionals f: X — F. Recall that a linear functional f € X’ is bounded if
and only if it is continuous at 0, and that this in turn is equivalent to the kernel
Ker(f) = {# € X : f(z) = 0} being a closed subspace of X1 If X is finite-
dimensional then any linear functional on X is automatically bounded and hence
X’ = X*. The situation is different when X is infinite-dimensional.

Proposition 2.9. Suppose that X s an infinite-dimensional normed vector space.
Then there exists an unbounded linear functional f: X — F.

PrOOF. Let A = {x,, : n € N} be a linearly independent subset of X. By Propo-
sition and Remark [2.4] there exists a Hamel basis B for X such that A C B.
Define the functional f by f(x,) = n||z,||, n > 1, and f(x) =0 for all x € B\ A
and extend f linearly to X. Then f € X’ but f is unbounded. O

Example 2.10. Let X be as in Example 2.8 Then the linear functional f on X
given by f(z) = 2/(1), z € X, is easily seen to be unbounded, for instance because
f(zy) = n while ||z,]|c0 =1 for all n > 14

The conclusion of Proposition is more interesting in the case where X is
complete, because on such a space any unbounded functional must have non-closed
graph. This follows from another important consequence of the Baire Category
Theorem [ Recall that, given two normed vector spaces X and Y we write B(X,Y)
for the space of bounded linear operators T': X — Y. Here a linear operator is said
to be bounded if there exists C' > 0 such that |Tz| < C||z| for all z € X. The
infimum over all such C' > 0 is the norm of T, denoted by ||T'||. Recall that

Tx
|IT|| = sup [|[Tz|| = sup || Tz| = sup || Tx| :supu,
rebx veBx 2€Sx a0 ||zl

and that B(X,Y) is complete if and only if Y is complete. Note also that X* =
B(X,F), which in particular is always complete. For future reference, recall that

B These make good exercises for reviewing your prior functional analysis courses.

Myowll notice that this explicit example is on a non-complete space, and might be wanting an
explicit example on a Banach space. The existence of discontinuous linear functionals on Banach
spaces relies on the axiom of choice, and it is consistent with ZF set theory without AC that all
linear functionals on Banach spaces are complete. Having said that, finding functional analysts that
don’t subscribe to the axiom of choice is also not straightforward.

15The closed graph theorem is more usually deduced from the open mapping theorem, and this
from the closed graph theorem. But in fact, Banach’s original proof of the open mapping theorem
didn’t use Baire’s category theorem; we will see this in the successive approximations lemma in
Section Ml



B(X) = B(X, X). Given a linear operator T: X — Y between two normed vector
spaces, we denote the graph of T by Gpr = {(z,y) € X xY : Tz = y}. For any
1 < p < oo we may endow the cartesian product X x Y with the norm given by

1
Qe+ lP) P, 1< p < oo,
1(z,9)]l, =
max { ||z, |yll}, P = oo,

for all (z,y) € X x Y. It is straightforward to see that all of these norms are
equivalent, and in fact the topology they define is the product topology on X x Y.
Moreover, if X and Y are Banach spaces then so is X x Y with respect to any of
the norms || - ||, 1 < p < oo.

Theorem 2.11 (Closed Graph Theorem). Suppose that X and Y are Banach
spaces and let T: X — 'Y be a linear operator. Then T € B(X,Y) if and only if G
1s closed in X xY.

Remark 2.12. If X is as in Example 8 and Y = C([0,1]), then the operator
T: X — Y defined by Tx = 2/, x € X, is unbounded but has closed graph. Hence
the completeness assumption on X in the Closed Graph Theorem cannot be omitted.
We will see on Problem Sheet 1 that completeness of Y cannot be dropped either.

Remark 2.13. As a complete aside — which you should feel free to ignore — closed
graphs are also particularly useful when we deal with densely defined unbounded
linear operators — such as operators of differentiation on spaces like C(T) or L*(T)
defined where this makes sense — as arise regularly in applications of functional
analysis to partial differential equations. In the absence of boundedness, having a
closed graph is the next best thing

3 Direct sums and complemented subspaces

If Y and Z are subspaces of a vector space X, then the sum Xg = Y + Z is a subspace
of X and there is a surjective linear map T': Y x Z — X given by T'(y, z) = y+ 2 for
all (y,z) € Y x Z. Recall that this linear map is injective if and only if Y N Z = {0},
in which case we write Xo =Y @ Z and call X the (algebraic) direct sum of Y and
Z. If X is a normed vector space then the map 7' is continuou but not necessarily
an isomorphism. If the inverse T~ of T is also continuous we write (once again)
Xo =Y @& Z and say that X is the topological direct sum of Y and Z.

Given a vector space X and a subspace Y of X, we say that Y is algebraically
complemented in X if there exists a further subspace Z of X such that X =Y & Z
as an algebraic direct sum. In this case Z is said to be an algebraic complement of
Y. It is easy to see that the space Y is algebraically complemented if and only if
there exists a projection P: X — X such that Ran P =Y. Recall that a projection
is a linear map satisfying P? = P and that Ran P = {Pz : x € X} is the range of P.
It follows from Zorn’s Lemma that every subspace is algebraically complemented in
just the same way as in finite dimensional linear algebra; see Problem Sheet 1.

167m talking about densely defined operators here, not everywhere defined operators, so this isn’t
contradicting the closed graph theorem.

"We give Y x Z the product topology, and equip it with one of the equivalent norms || - ||, as at
the end of the previous section.



Similarly, if X is a normed vector space we say that a subspace Y of is (topo-
logically) complemented in X if there exists a further subspace Z of X such that
X =Y @ Z as a topological direct sum. We call Z a (topological) complement of
Y. In this course, since we're doing functional analysis and not just linear algebra,
by a ‘complemented subspace’ we will always mean a topologically complemented
subspace.

Proposition 3.1. Let X be a normed vector space and suppose that'Y and Z are
subspaces of X such that X =Y ® Z algebraically. Then X is the topological direct
sum of Y and Z if and only if the map P: X — X given by P(y+z) =y fory €Y,
z € Z is bounded. In particular, a subspace Y of X is complemented if and only if
there exists a bounded projection on X whose range is Y .

PrOOF. Let us endow the product Y x Z with the co-norm. Then the map 7: Y x
Z — X introduced above satisfies ||T']| < 2 and its inverse is given by

T 'z = (Pz,(I-P)z), z€X.

Thus if P is bounded then so is 77! and in fact |77 < 1+ ||P||, while if 7! is
bounded then so is P and ||P|| < ||T~!||. This proves the first part of the result,
and the second part follows easily. O

Note that any topologically complemented subspace is closed, as is any topolog-
ical complement. ‘Which closed subspaces of a Banach space are complemented?’
is a fundamental question in Banach space theory. In the Hilbert space setting,
by the Projection Theorem any, closed subspace of a Hilbert space is topologically
complemented, even by a projection of norm 118 As we will see right at the end of
the course, for the classical sequence spaces X = ¢y or X = P (with 1 < p < o0,
every infinite dimensional complemented subspace of X is isomorphic to X.

Finally we note that for Banach spaces, an algebraic direct sum of closed sub-
spaces is automatically a topological direct sum. This is a consequence of the fol-
lowing important result, which we recall from an earlier course.

Theorem 3.2 (Inverse Mapping Theorem). Let X and Y be Banach spaces and
suppose that T € B(X,Y) is a bijection. Then T is an isomorphism.

Theorem 3.3. Let X be a Banach space and suppose that Y and Z are closed
subspaces of X such that X =Y ® Z algebraically. Then X =Y @ Z topologically.

PRrOOF. If we endow the product Y x Z with any of the p-norms, then Y x Z is a
Banach space and hence the map T: Y x Z — X given by T'(y,2) =y+z2,y €Y,
z € Z, is a bounded linear bijection between two Banach spaces. By the Inverse
Mapping Theorem 7' is an isomorphism, so X =Y & Z topologically. O



4 Quotient spaces and quotient operators
Given a vector space X and a subspace Y of X we may consider the cosets
x+Y={z+y:yeY}, zelX.

These form a vector space with zero element Y = 0+Y", addition given by (x; +Y)+
(x2+Y) = (x1+22)+Y, z1,22 € X, and scalar multiplication A(x +Y) = Az + Y,
A € F, z € X. Note that two cosets 1 + Y and x2 + Y coincide if and only if
x1 —x9 € Y. We call this space the quotient space and denote it by X/Y. Recall
that if Z is an algebraic complement of Y in the vector space X[ then X/Y is
isomorphic to Z as a vector space. We also have a canonical factorisation of linear
maps from the first isomorphism theorem. Given a linear map 7' : X — Y, we get a
well defined linear bijection Ty : X/Ker (T') — Ran T given by Ty(x +KerT) = T'(x).
Then T factorises as

X T RanT——>Y

N A

X/KerT

This section aims to develop the analogous theory for normed vector spaces.
If X is a normed vector space we may define a map || - ||: X/Y — [0,00) by

|l + Y| =dist(z,Y) =inf{|lzr+y|| :y € Y}, zelX.

But note that ||z + Y| = 0 need not imply that z +Y =Y, which is to say x € Y.
Instead it only implies that x lies in the closure of Y.

Proposition 4.1. Let X be a normed vector space and suppose that'Y is a closed
subspace of X. Then the map || - ||: X/Y — [0,00) given by ||z + Y| = dist(z,Y),
x € X, defines a norm on X/Y . Moreover, if X is complete then so is X/Y .

PROOF. It is clear from the above remarks that ||z + Y| = 0 if and only if x € Y.
Moreover, it is easy to see that for A € F and x € X we have |[Ax+Y|| = |||z + Y.
If 1,22 € X, then for any y1,y2 € Y

|21+ 22+ Y| < |lor +yr + 22+ w2l < |lo1 + w1l + (22 + 2],

so taking the infimum over y1,y2 € Y shows that ||z1+xo+Y | < |lz1+Y||+|z2+Y ]|
Thus || - || defines a norm on X/Y. Now suppose that X is complete, and recall that
a normed vector space is complete if and only if every absolutely convergent series
is convergent. Suppose that z, € X, n > 1, are such that > ", [z, + Y] < oo.
For each n > 1 let y, € Y be such that ||z, + yn| < [|Jzn + Y| +27". Then

8This is not true in a Banach space setting, and we will see some examples in example sheet 2.
Moreover a theorem of Lindenstrauss and Tzafriri, beyond the scope of this course, shows that in
fact Hilbert spaces are the only spaces all of whose closed subspaces are complemented. Precisely,
if X is a Banach space, such that every closed subspace is complemented, then X is isomorphic to
a Hilbert space.

Ysuch exists by Zorn’s lemma, as shown on exercise sheet 1.



Yol 1z + ynll < 00, so by completeness of X the series Y 7 (xy + yp) converges
in norm to some z € X. But now

N N
Z(azn—l—Y)—(z—l—Y)HS Z(a:n—l—yn)—z —0, N — oo.
n=1 n=1
Hence the norm || - || turns X/Y into a Banach space. O

When X is a normed vector space and Y is a closed subspace we take the quotient
space X/Y to be endowed with the norm || - || from Proposition ] and we call this
the quotient norm.

Remark 4.2. (a) If X is a normed vector space and Y a closed subspace, then we
may consider the map m: X — X/Y given by n(z) = 24+ Y, x € X. It is clear
that 7 is a bounded linear operator and that 7(B%) = B% Iy In fact, 7 is an open
map and the quotient topology it induces on X/Y is precisely the quotient norm
topology.

(b) We can generalise the construction of quotient spaces. Indeed, given a normed
vector space X and a subspace Y the map p: X — [0,00) defined by p(z) =
dist(z,Y) is a seminorm, that is to say it satisfies the axioms for a norm except
that p(z) = 0 need not imply = = 0. Given an arbitrary seminorm p on a vector
space X we may consider the subspace Y = {x € X : p(z) = 0} of X and endow
X/Y with the norm ||z 4+ Y| = p(z), z € X. Conversely, given a subspace Y of X
and a norm on X/Y we may define a seminorm on X by p(z) = ||z + Y|, z € X.

Example 4.3. (a) If X is a Hilbert space and Y is a closed subspace, then by the
projection theorem X =Y @Y. Let P denote the orthogonal projection onto Y.
Then, given z € X we have z+Y =2z — Px+Y and ||+ Y| = ||z — Px|. Thus the
map T: X/Y — Y=+ given by T(z +Y) = 2 — Pz, x € X, is a well-defined isometric
isomorphism, and hence X/Y =Y+,

(b) As an example of the construction mentioned in part (b) of Remark let X
be the space of all integrable functions over some measure space (2,3, ). If the
seminorm p is given by p(z) = [, |z|dp and if Y = {& € X : p(x) = 0}, then X/Y
is precisely L'(2, %, ).

Given vector spaces X and Y and a linear operator T': X — Y, the First Isomor-
phism Theorem tells us that 7" induces a well-defined linear bijection Tp: X/ KerT' —
RanT by To(z + KerT) = Tz, x € X. We are interested in the topological version.

Lemma 4.4. Let X and Y be normed vector spaces and suppose that T € B(X,Y).
Then the operator Ty: X/ KerT — RanT given by To(x + KerT) = Tz, © € X, is
bounded and in fact | Tyl = ||T|.

Proor. Given x € X and z € Ker T we have
[To(z + Ker T)|| = (| T(x + 2)|| < || T[]z + =[],

and taking the infimum over z € Ker T' shows that T} is bounded with [|Tp|| < |||
On the other hand,

[Tz = [[To(z + Ker T)|| < [|To[l[lx + Ker T'|| < [[Tol[||zf, =€ X,
and hence ||T|| < ||To]|, as required. O

10



Given normed vector spaces X and Y and an operator 7' € B(X,Y) we say
that T is a quotient operator (an isometric quotient operator) if T is surjective and
the map Tp considered in Lemma [ is an (isometric) isomorphism. Our goal is to
characterise these.

Example 4.5. (a) If X is a normed vector space and Y is a closed subspace, then the
map m: X — X/Y given by 7(z) = x+Y is an isometric quotient operator. Indeed,
7o is the identity operator on X/Y. We call 7w the canonical quotient operator.

(b) Suppose that || - || and ||| - ||| are two norms on a vector space X such that
llz]l| < C||z|| for some C > 0 and all z € X, and let T be the identity operator
from (X, - ||) to (X,]|| - [/})- Then T is a quotient operator if and only if it is an

isomorphism, that is to say if and only if the two norms are equivalent.

Remark 4.6. In some cases it is useful to think of a not necessarily surjective
operator T: X — Y in terms of its so-called canonical factorisation. Indeed, if we
write m: X — X/ KerT for the canonical quotient operator and S: RanT — Y for
the usual embedding, then T'= SoTyom, where Ty: X/ KerT — RanT is as above.
Hence the following diagram commutes:

x — T vy

a Is

X/KerT —2% RanT

Theorem 4.7. Let X andY be normed vector spaces and suppose that T € B(X,Y).
Then the following are equivalent:

(a) T is a quotient operator;

(b) There exists M > 0 such that for every y € Y there exists x € X with Tx =y
and ||z|| < M|lyll;

(c) There exists 7 > 0 such that By, (r) C T(B%);

(d) T(B%) has non-empty interior;

(e) T is an open map.

Moreover, T is an isometric quotient operator if and only if T(B%) = By..

PrROOF. We begin by showing carefully that (a) <= (c). Suppose that T is a
quotient operator. Then T is surjective and there exists r > 0 such that ||[Tz| >
rllz + KerT|| for all x € X. Let y € By, (r). Then there exists zg € X such that
Txzo =y and |ly|]| > r||zo+KerT||. Thus ||zo+KerT| < 1 so there exists zp € Ker T
such that for = x9+ 29 we have x € B and Tx = y. Hence By, (r) C T(B% ). Now
suppose conversely that By (r) € T(B%). Then T is clearly surjective. Let z € X
and let y = Tx. For rg € (0,7) there exists z € B such that for xg = ry ' ||y||z we
have Txg = y. Hence ro||x + Ker T'| < rol|zo|| < ||Tz||, so T is a quotient operator.
In fact, since r¢ € (0,7) was arbitrary it follows that || Tz| > r|z + Ker T||, z € X.

It is straightforward to see that (a) = (b), and in fact if ||Tz|| > 7|z + Ker T'||
for all z € X then (b) holds for any M > r~!. Moreover, (b) = (c) with r = M1,
and (c) = (d) is trivial. If (d) holds and T'(B%) contains By (T'zg,r) for some
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xo € B and some r > 0, then by symmetry T'(B% ) also contains By, (—T'xg,r) and
hence by convexity it also contains

o 1 [e] 1 [¢]
By('r') = §By(T$O, 7") + §By(—Tﬂ§'0,T).

Suppose that U C X is open and that y € T(U). Then y = Tx for some = € U.
Since U is open there exists ¢ > 0 such that B (z,e) =  + B%(¢) € U. Then by
linearity of T" we see that By (y,re) C T(B%(z,¢)) € T'(U), so T(U) is open and
(d) = (e). Finally, if (e) holds then T'(B%) is open and it certainly contains the
origin. Hence (e) = (c).

For the final statement, note that if 7" is an isometric quotient operator then the
proof of (a) = (c) shows that By, C T'(B% ). Moreover, ||T'|| = ||Tp|| = 1 and hence
T(B%) C By.. Conversely, if T'(B%) = By then the proof of (c) = (a) shows that
|Tz|| > ||z+KerT|| for all z € X. We also have || T|| = 1 and hence ||Tp|| = 1. Thus
|ITz|| = ||z + Ker T'|| for all x € X and T is an isometric quotient operator. O

In the Banach space setting we can once again say more.

Theorem 4.8 (Open Mapping Theorem). Let X and Y be Banach spaces and
suppose that T € B(X,Y) is a surjection. Then T is an open map.

By Theorem [£.7] this tells us that if X and Y are Banach spaces then an operator
T € B(X,Y) is a quotient operator if and only if it is surjective In order to improve
Theorem [£.7] even further we require the following lemma which is used in the proof
of the Open Mapping Theorem.

Lemma 4.9 (Successive Approximations Lemma). Let X be a Banach space,
Y a normed vector space and T € B(X,Y'). Suppose there existe € (0,1) and M >0
such that dist(y, T(B%(M))) < € for all y € By.. Then By C T(B%(M(1—¢)71)).
Furthermore, if T(B% (M)) contains a dense subset of By, then By, C T(B%(M)).
In either case, T is a quotient operator and Y s complete.

PRrROOF. Let y € By.. We recursively define sequences (x,)>2; in X and (yn)ne;
in Y as follows. Set y; = y and let x; € B (M) be such that [Tz — yi1|| < e.
Supposing we have x, € X and y, € Y such that |ly,|| < &1, ||lzn| < Me™!
and ||Tx, — ynl| < €™, we set ynt1 = Yn — Txy. Since € "||ynt1]| < 1 there exists
x,.1 € B (M) such that [T, | — e "ypyi1| < e. If we let 41 = ™), then
|Zn+1|] < Me™ and we may continue inductively. Since Y 7, ||zn|| < co and X is
complete, the series > > | x, converges to some x € X satisfying

[
M
]l < llznll < ¢
n=1

Moreover,

-

k=1

= |lynt1l| <" =0, n—oo.

2080,in the Banach space setting, we have the same result as in linear algebra: a surjective
morphism 7" : X — Y (i.e. bounded linear map) induces an isomorphism (in the category of
Banach spaces with bounded linear maps) between the quotient space X/KerT and Y.
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By continuity of T we obtain that 7'z = y, which proves the first claim. If T'(BS (M))
contains a dense subset of By, then By, C T'(B% (M))+ By (¢) and hence By (1—¢) C
T(B%(M)) for all € € (0,1). It follows that

By = |J By(1—-¢) CT(BX(M)),
€€(0,1)

as required. In either case Theorem [.7] shows that T is a quotient operator. Thus
Y is isomorphic to the Banach space X/ KerT and hence Y itself is complete. [

Remark 4.10. If in Theorem [I77 we assume X to be complete, then by Lemma 49
we may weaken the conditions in (c) and (d). For instance, in (c) it would be
sufficient to require that the closure of T'(Bx) contains By (r) for some r > 0, or
indeed that there exist ¢ € (0,1) and r > 0 such that By (r) C T'(B%) + By (¢). In
the first case we need to recall that by continuity of T' the closures of T'(B%) and
T(Bx) coincide. Furthermore, a necessary and sufficient condition for 7" to be an
isometric quotient operator is now that the closure of T'(Bx) equals By.

5 The Hahn-Banach Theorems

The Hahn-Banach theorems refer to a rang of theorems in functional analysis
concerned with extension of functionals, and separation of points and sets.

e Extension Given a linear functional g defined on a subspace Y of a vector
space X, when can we extend g to a functional defined on X7 Asked like
this, the answer is alway, so a more useful version of this question imposes
some control on g, and asks for extensions retaining control. For example
(and probably the version of Hahn-Banach you're familiar with already), if X
is a normed space, we can extend bounded linear functionals from subspaces
without increasing the norm (see Remarks [5.4] and [B.7]).

e Separation Given disjoint subsets A and B of a vector space X, when we can
we separate these by hyperplanes, i.e. in the case of real vector spaces find a
linear functional f on X and constant ¢ such that f(a) < ¢ for all a € A, while
f(b) > cfor all b € B. Drawing some pictures in 2 dimensions should convince
you that at the very least you’ll need some convexity (and for the version I've
stated both A and B to be closed). Is convexity enough?

The version of control we will use for extension in this course is sublinearity.
Given a vector space X, a map p: X — R is said to be a sublinear functional if it
satisfies the following two properties:

e p(Az) = Ap(z) for all A > 0 and all z € X;
e p(z+y) <p(x)+ply) forall z,y € X.

21'We will see further versions in Section 9, and in the exercises. Annoyingly in the literature it
is quite normal to say 'by Hahn-Banach’ to refer to any version, or some corollary thereof. At least
in this course we will try and do better.

22Using Hamel bases and the axiom of choice.
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Note that any sublinear functional satisfies p(0) = 0. Any seminorm, and in par-
ticular any norm, is a sublinear functional. Moreover, if F = R then any linear
functional on X is also a sublinear functional.

An important example of a sublinear functional is the Minkowski functional of
a convex set Suppose that C' is a convex subset of X which is absorbing in the
sense that for each x € X there exists A > 0 such that Ax € C'. Then for each z € X
the set {\ € R: Az € C} is an interval containing 0. The Minkowski functional pc
of C is defined by

po(z) =inf {A>0: A_leC}, z e X.

The set C' is said to be symmetric (or sometimes balanced when F = C) if z € C
implies Az € C for all A € F with |A|] = 1. A set of the form {Az : A > 0} with
x € X \ {0} is called an infinite ray.

Lemma 5.1. Suppose that C' is a convex absorbing subset of a vector space X. Then
pco is a sublinear functional. If C is symmeltric, then pc is a seminorm. If C in
addition contains no infinite rays, then pc is a norm.

PROOF. Let z € X. If x = 0 then A™'z € C for all A > 0 and hence pc(z) = 0. If
x # 0 and p > 0 is such that uz € C, then by convexity A='z € C forall A > p~1. It
follows that po(x) is well-defined and that 0 < po(z) < u~!. To prove subadditivity,
let 7,y € X and define S, = {A>0: A"z €C}and S, = {A>0: A"y € C}. For
A € Sz, p €Sy we have by convexity

Tty A [
=—\N o+ —— eC,
Ap A+p )\—HLM Y

and hence A+ > pc(x+y). Taking the infimum over A € S, and p € S, shows that
pc is subadditive. If A > 0 and # € X, then {u > 0: p~ Az € C} = { \u:p 'z €
C'}, and hence po(Ax) = Apco(z). If C is symmetric, a similar argument shows that
pc(Ax) = |Apc(x) for all A € F and € X. Suppose finally that pc(z) = 0. Then
A1z € C for all A > 0, so either 2 = 0 or C contains an infinite ray. Thus if C is
symmetric and contains no infinite rays then pc is a norm on X. O

Remark 5.2. If X is a normed vector space and C is a convex absorbing subset of
X,then C={r € X :po(zr) <1} if Cisopenand C ={z € X : po(z) <1} if Cis
closed. Moreover, if B € C C Bx then pc(x) = ||z| for all z € X.

When we first consider norms, we often draw pictures of the unit ball in R?
with respeect to the p-norms. What we’re doing with these Minkowski functionals

is not dissimilar; one is specifying a ball and producing a corresponding sublinear
functional 24

Theorem 5.3 (Hahn-Banach Extension Theorem, real case). Let X be a real
vector space and let Y be a subspace of X. Suppose that p is a sublinear functional
on X and that g € Y' is such that g(y) < p(y) for all y € Y. Then there exists
f € X' such that fly =g and f(z) < p(z) for all z € X.

Z3This starts to expose the deep connection between Hahn-Banach extension type theorems and

convexity. This goes a lot further than we’ll see in the course.
24We'll return to this point on example sheet 2.
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Remark 5.4. If p is a (semi)norm then the assumption on ¢ in fact implies that
lg(y)| < p(y) for all y € Y. Thus Theorem [5.3] contains the standard version of
the Hahn-Banach Theorem allowing us to extend a bounded linear functional on a
(possibly non-separable) normed vector space without increasing its norm.

Lemma 5.5. Let X be a real vector space and let Y be a proper subspace of X.
Suppose that p is a sublinear functional on X and that g € Y is such that g(y) < p(y)
for ally € Y. Suppose moreover that xo € X \'Y and let Z be the linear span of
Y U{xzo}. Then there exists f € Z' such that fly = g and f(z) < p(z) for all z € Z.

PrROOF. Every z € Z can be uniquely expressed in the form z = y+ Axg withy € Y
and A € R. This forces f to be of the form f(y + A\zg) = g(y) + ¢ for some ¢ € R,
which remains to be fixed. Now the condition f(z) < p(z) for all z € Z is equivalent
to g(y) + cA < p(y + Axg) for all y € Y and A € R. For A = 0 the condition is true
for all y € Y by assumption, and distinguishing the cases A 2 0 it is straightforward
to see that our condition is equivalent to having

g(y1) —p(yr — x0) < c < p(y2 +w0) — 9(y2), y1,y2 €Y.

We need to show that, for y;,y2 € Y,

g(y1 + v2) < plyr — x0) + p(y2 + x0).

But this follows immediately from the assumption on g and subadditivity of p. Thus

sup {g(y) —ply —z0) sy € Y} <inf {p(y +z0) —g(y) : y € Y},
and we may choose ¢ to be any number between these two quantities O

If the space X in Theorem [(.3]is a separable normed vector space and p is the
norm, then we may this lemma repeatedly to extend g by one dimension at a time,
thus defining f on a dense subset of X, and then we may extend to the whole of X
using continuity. In the non-separable case we usd?® Zorn’s Lemma.

PrROOF OF THEOREM [5.3t We say that a real valued function f is a g-extension if
its domain D(f) is a subspace of X containing Y, and f is linear, with f|y = ¢g and
f(2) < p(z) for all z € D(f). Let P be the collection of all such g-extensions (noting
that this is non-empty as g is a g-extension) equipped with the partial order f; 3 fa
if and only if D(f1) C D(f2) and fa|p(s,) = f1£1 Given any chain {f; :i € C} in P,
note that | J;co D(f;) is a subspace of X (containing Y') and we can define a linear
map f: D(f) = R by f(x) = fi(x) for z € Dom(f;). This f is a g—extension@ SO
provides an upper bound for the chain.

Therefore Zorn’s Lemma there is a maximal g-extension f. If D(f) # X, then
choose zp € X \ D(f), and extend f by Lemma to some f; € P defined on
Span(D(f) U {xo}), contradicting maximality. O

%580 the extension will be unique when these two quantities are equal. We’ll investigate how to
characterise uniqueness of extension on example sheet 3.

268trictly speaking there’s a bit of logical overkill here. Hahn-Banach is weaker than the axiom of
choice, but strong enough to imply the existence of non-Lebesgue measurable sets and the Banach-
Tarski paradox. The exact logical statement equivalent to Hahn-Banach is a little fiddly though.

Z"Note that fi = fo is exacty the relation that the graph of fi is a subset of the graph of fa.

28Can you justify all these claims?
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If F = C and functionals are complex-valued and complex-linear, then the sub-
linear functional appearing in Theorem [(.3] needs to be replaced by a seminorm.
Surprisingly the following result was obtained around 10 years after the real version.

Theorem 5.6 (Hahn-Banach Extension Theorem, complex case). Let X be
a complex vector space and let Y be a subspace of X. Suppose that p is a seminorm
on X and that g € Y’ is such that |g(y)| < p(y) for ally € Y. Then there exists
f € X' such that fly =g and |f(z)| < p(x) for all x € X.

PROOF. Observe first that we may regard a complex vector space as a real vec-
tor space with the same operations, and that the assignment f — Re f sending a
complex-linear functional f to the real-linear functional Re f given by (Re f)(z) =
Re f(z), z € X, is a bijection. Indeed, it is clear that Re f is real-linear, and if
Re f = Re g for two complex-linear functionals f and g then, for z € X,

Im f(z) = —Re(if(z)) = —Re(f(ix)) = — Re(g(iz)) = —Re(ig(z)) = Img(x),

and hence f = g, so the assignment is injective. On the other hand, if g is a real-linear
functional then it is easy to verify that the functional f given by f(z) = g(z)—ig(iz)
for x € X is complex-linear and satisfies Re f = ¢, so the assignment is surjective.
Our next observation is that Re f(z) < p(z) for all x € X if and only if | f(z)| < p(z)
for all x € X. Indeed, one implication is trivial and for the other we note that if
Re f(x) < p(z) for all x € X then for some 0 € [0, 27) depending on z € X we have

[f(@)] = e f(x) = Re f(e "z) < ple”¥z) =p(z), x€X.

Thus given g: Y — C as in the statement of the theorem, we may apply Theorem [5.3]
to find a real-linear functional fy: X — R such that fy|y = Reg and fo(x) < p(z) for
all z € X. Now set f(z) = fo(z) —ifo(iz), x € X. Then f € X" and |f(x)| < p(z),
xz € X. Furthermore, we have Re f(y) = Reg(y) for all y € Y, so arguing as before
we see that f|y = g, as required. O

Remark 5.7. The above proof also shows that if X is a complex normed vector space
and f € X*, then the real-linear functional Re f is bounded with ||Re f|| = ||f]
Note too that Theorem contains the usual Hahn-Banach extension theorem for
bounded linear functionals on complex normed spaces.

In the next result we collect some of the standard consequences of the Hahn-
Banach Theorem. Here and in what follows, given a subset M of a normed vector
space X we denote the annihilator of M in X™* by

M°={feX*: f(z)=0foralzeM},
and given a subset N of X™* we let
No={zeX: f(x)=0forall feN}
be the annihilator of N in X. It is clear that annihilators are closed subspaces.

Corollary 5.8. Let X be a normed vector space.

(a) For each xg € X there exists f € Sx» such that f(xg) = ||zo||. In particular,
||| = max{|f(z)|: f € Sx+} for all x € X.
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(b) IfY is a subspace of X and xo € X, then there exists f € Y° such that || f|| <1
and f(xzg) = dist(xo,Y). In particular, the closure of Y coincides with (Y°),
and Y is dense in X if and only if Y° = {0}.

PROOF. For the first part of (a) we may take any f € Sy~ if xg = 0, and otherwise
it suffices to apply the Hahn-Banach Theorem to the linear functional g defined on
span{zo} by g(Azxg) = A||zo||, A € F. The second part then follows easily. For part
(b) we may consider the seminorm p(z) = dist(z,Y), z € X, and g: span{zo} — F
given by g(Azg) = Adist(zo,Y), A € F. By the Hahn-Banach Theorem there exists
a linear functional f: X — F such that f(zo) = g(x0) = dist(zo,Y) and |f(x)| <
p(z) < ||z|| for all x € X. In particular, f € X* with || f|| < 1 and f € Y° since
|f(x)] < p(x) =0 for all z € Y. The remaining statements follow straightforwardly
from the fact that dist(x,Y) = 0 if and only if = lies in the closure of Y. O

Let X be a normed vector space and suppose that C C X and xg € X \ C. We
say that ¢ and C' are strictly separated if there exists f € X* such that Re f(zg) >
Re f(x) for all z € C, and that they are uniformly separated if there exists f € X*
such that

Re f(xzo) > sup{Re f(x) : x € C}.

If F = R the real parts are redundant.

Theorem 5.9 (Hahn-Banach Separation Theorem). Let X be a normed vector
space and suppose that C' is a non-empty convexr subset of X and that zo € X \ C.
(a) If C is open, then xo and C are strictly separated.
(b) If C is closed, then xo and C are uniformly separated.

PROOF. (a) Fix yo € C and let zg = xg — yo and Cy = C — yp. Since C is open
we have B$ (¢) € Cp for some ¢ > 0. In particular, the set Cj is absorbing so the
Minkowski functional p = p¢, is a well-defined sublinear functional on X. Note also
that p(x) < e~ !|jz| for all z € X. Consider the functional g : span{zg} — F given
by g(Az0) = A, A € F. Since zp ¢ Cy we have p(z9) > 1 = g(zp). Suppose first that
F =R. Then for A > 0 we have p(Azp) = Ap(z0) > g(Azp), while for A < 0 we have
p(Azp) > 0 > g(Azp). By the Hahn-Banach Extension Theorem there exists a linear
functional f on X such that f(Azg) = A for all A € R and f(z) < p(z) < e 1| z| for
all z € X, so f € X*. Let x € C. Then there exists 6 > 0 such that = 4+ dzg € C, so
p(x 4+ dz0 — yo) < 1 and hence

f(@)+ 0= f(x+ 0620 — x0) + fw0) < p(x+ 520 —yo) — 1 + f(20) < f(20),

giving f(z) < f(zg). If F = C we find, by considering X as a real vector space and
proceeding as above, a bounded real-linear functional fy on X such that fy(z) <
fo(zo) for all x € C. As in the proof of Theorem we now take f € X* to be
given by f(x) = fo(z) —ifo(iz), = € X, so that fy = Re f.

(b) If C'is closed and x¢ ¢ C then there exists € > 0 such that zg ¢ C. = C+ B% (¢).
Since C: is open and convex we may apply part (a) to find f € X* such that
Re f(z) < Re f(xg) for all x € C.. Let zp € X be such that f(zp) =1 and let § >0
be such that §||zg|| < e. Then for all z € C' we have = + dzp € C. and hence

Re f(z) = Re f(x 4+ dz0) — d < Re f(z0) — 0,

which gives the result. O
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Recall that, given a bounded linear operator 7': X — Y between two normed vec-
tor spaces, the (topological) dual operator T*: Y* — X* of T is given by (T f)(z) =
f(Tx) for f € Y* € X. We know that T* € B(Y*, X*), and by a standard
application of the Hahn-Banach Theorem we have ||[T%| = ||T'||. Recall also that
T is said to be an isomorphic embedding if there exists a constant r > 0 such that
|Tz|| > r||z| for all x € X. This is equivalent to saying that 7" maps isomorphically
onto its range.

Theorem 5.10. Let X and Y be normed spaces and suppose that T € B(X,Y).

(a) T is an isomorphic embedding (an isometry) if and only if T* is a quotient
operator (an isometric quotient operator).

(b) If T is a quotient operator (an isometric quotient operator) then T* is an
isomorphic embedding (an isometry), and if X is complete the converse holds.

PROOF. (a) Suppose that 7" is an isomorphic embedding, so that there exists r > 0
such that ||[Tz| > r||z|| for all z € X. Let Z = RanT. Given g € X* we may
define h € Z' by setting h(Tx) = g(x), x € X. This is well-defined by injectivity of
T, and moreover |h(Tz)| < ||g|lllz|| < M|g|||Tz|, = € X, where M = r~—!. Thus
h € Z* and by the Hahn-Banach Theorem there exists f € Y* such that f|z = h and
Il = ||h]| < M]|g||. Thus T*f = g and, by Theorem [7], T* is a quotient operator.
If T is an isometry we may take r = M = 1 and hence ||[T* f|| > || f]| > ||f + Ker T%||.
Since |[(T™)o|| = ||T7]] = ||T|| = 1 it follows that T is an isometric quotient operator.

Conversely, suppose that T™ is a quotient operator. Then T™* is surjective and
there exists v > 0 such that |T*f|| > r|f + KerT™| for all f € Y*. Hence by
Theorem [£.7] there exists M > 0 such that for every g € X* there exists f € Y*
with T*f = g and || f|| < M]||g||, and as observed in the proof of that result we may
take any M > r—'. Now by Corollary [5.8, given x € X, there exists g € Sy~ such
that g(z) = ||z||. Choose f € Y* so that T*f = g and ||f|| < M. Then

2]l = g(x) = f(Tz) < [|f[Tz] < M| Tz, (5.1)

which shows that T is an isomorphic embedding. If 7™ is an isometric quotient
operator we may choose r = 1 and then, for every z € X, (5.1]) holds for all M > 1.
In particular, ||Tz|| > ||z| for all x € X. Since ||T'|| = ||T|| = 1, T is an isometry.

(b) If T' is quotient operator, then T is surjective and there exists r > 0 such
that | Tz| > r||z + Ker T'|| for all # € X. By Theorem L1 there exists M > 0 such
that for every y € Y there exists x € X with Tx = y and ||z|| < M|y|| and once
again any M > r~! works. Given y € Y, let € X be as described. Then

F @ =T f (@) < T Fllll=ll < MIT" £yl

and hence ||f|| < M||T* f]| for all f € Y*, so T™ is an isomorphic embedding. If T
is an isometric quotient operator we may take r = 1 and then, for every f € Y*,
we have ||f|| < M||T*f|| for all M > 1. Hence ||T*f|| > || f]| for all f € Y*. Since
T = |T|| = ||To]| = 1, T* is an isometry.

The final statement requires the Hahn-Banach Separation Theorem and the Suc-
cessive Approximations Lemma; see Problem Sheet 2. O
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Remark 5.11. In the setting of Theorem [5.10 we always have RanT* C (KerT)°.
If T is surjective and g € (KerT)® the map f(Tz) = g(x), x € X, is a well-
defined linear functional on Y. If T is a quotient operator an argument similar
to the one used in part (b) above shows that f € Y*. Since ¢ = T f we have
that RanT* = (KerT)° in this case. In particular, T* has closed range. Recall
that we always have (RanT™), = KerT and (Ran7)° = KerT™. In particular, by
Corollary the closure of Ran T coincides with (Ker 7*),, but in general even the
closure of RanT™ is contained in (KerT')° as a proper subset. We shall return to
this issue in later sections.

Corollary 5.12. Let X be a normed vector space and Y a closed subspace of X.
Then Y* =2 X*/Y° and (X/Y)* = Y°.

PRrROOF. Let S: Y — X denote the inclusion operator and let 7: X — X/Y denote
the canonical quotient map. Then S is an isometry and 7 is an isometric quotient
operator. By Theorem B.I0, S*: X* — Y™ is an isometric quotient operator and
7 (X/Y)* — X* is an isometry. But Ker S* = (Ran5)° = Y°, and hence Y* =
X*/Y°. By Remark .11l we have Ran7* = (Ker7)° =Y*°, so (X/Y)* = Y°. O

6 Biduals and reflexivity

Given a normed vector space X, the dual space X* is a Banach space and in par-
ticular has a dual space X** = (X*)* of its own, the so-called bidual of X. Re-
call that there always exists a well-defined linear map Jx: X — X™** given by
(Jxx)(f) = f(z) for z € X and f € X*. By Corollary [0.8 we have

[ Tx (2)|| = max{[f ()] : f € Sx+} = [lz]l, = €X,

so Jx is an isometry. The space X is said to be reflexive if Jx is surjective.

Given any metric space X, a pair (Y, J) is said to be a completion of X if YV is
a complete metric space and J: X — Y is an isometry whose range is dense in Y.
Every metric space has a completion, and this is usually proved by considering a
quotient of the space of all Cauchy sequences. In the case of normed vector spaces
we obtain this result with very little effort by a different argument.

Proposition 6.1. Every normed vector space X has a completion (Y, J) such that
Y is a Banach space and J is linear.

PROOF. Let Y be the closure of Jx(X) in X** and consider the map J: X — Y
given by J(x) = Jx(x), z € X. Then Y is a closed subspace of the Banach space X**
and therefore itself is complete, and the range of J is dense in Y by construction. [

Let us recall briefly some examples of classical Banach spaces. We write £*°
for the space of all bounded scalar-valued sequences = = (zy)n,>1, and we endow
this space with the supremum norm given by ||z||cc = sup,>;|zn|. We write ¢
for the subspace of £ given by sequences z such that lim, .. 2z, exists, and we
let ¢g denote the subspace of sequences converging to zero. With the supremum
norm both of these are closed subspaces of £*° and hence themselves Banach spaces.
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For 1 < p < oo we let /P denote the space of scalar-valued sequences = for which
Y02 |zn|P < 00, endowed with the norm

o) 1/p
[z]lp = <Z Ixnlp) :
n=1

We denote by ey, n > 1, the sequence (9, x)r>1 and we let cop = span{e, : n > 1}
be the space of finitely supported sequences. Then c¢qg is dense in ¢y and in ¢P for
1 < p < oo, but not in ¢ or in £*°.

If 1 < p < oo we say that ¢ is the Hélder conjugate of p if 1 < q¢ < oo and
p~ '+ ¢ ! = 1. You will have shown previously that the dual of ¢ for 1 < p < oo
is isometrically isomorphic to ¢9, where ¢ is the Holder conjugate of p, via the map
®,,: 04 — (€P)* given by

((I)Py)(:z) = Z-Tnym xell, yeli

n=1

In particular, (¢/1)* = ¢°°. Similarly, the duals of ¢ and ¢y are both isomorphically
isometric to ¢! by the maps ®: ¢! — ¢* and ¥: (' — ¢; given by

oo
((I)y)(‘r) =Y 'rlh—)n;o Tn + zjl'rnyn+17 rece ye ‘617
n=

and

o0
(Ty)(x) = @nyn, = E€co, y L,
n=1

respectively. Note in particular that for 1 < p < oo the space P is isometrically
isomorphic to its bidual. Let X = /P for 1 < p < oo and let ¢ be the Holder
conjugate of p. Then Jx = (@;1)* o ®,. Indeed, for x € X and f € X* we have
f = ®,(y) for some y € ¢9, and hence

(@, 1) (242))(f) = (242)(y) = Y @ayn = (py)(z) = f () = (Jxz)(f),
n=1

so X is in fact reflexive. Other examples of reflexive spaces include all finite-
dimensional spaces, all Hilbert spaces and, as we shall prove in Section [§, all LP-
spaces for 1 < p < oc.

Remark 6.2. A construction due to R.C. James (1951) shows that it is possible for
a Banach space to be isometrically isomorphic to its bidual and yet non-reflexive.

We also see from the above considerations that the spaces ¢ and cg are non-
reflexive. Indeed, both spaces are separable but their bidual is isometrically isomor-
phic to £°°, which is non-separable. Recall that a normed vector space is said to be
separable if it contains a countable dense subset. We will see on Problem Sheet 2
that ¢y not only fails to be isometrically isomorphic to its bidual, it is in fact not
(isometrically) isomorphic to the dual of any normed vector space. Notice, however,
that not knowing the dual of £°° makes it hard to say anything about reflexivity of
¢! for the moment. Separability turns out to be useful here too.
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Lemma 6.3. Let X be a normed vector space and suppose that X* is separable.
Then X too is separable.

PRrROOF. Let {f, :n > 1} be a dense subset of Sx~ and, for each n > 1, let z,, € Bx
be such that |f,(x,)| > 1/2. Let Y = span{x,, : n > 1}. In order to show that X is
separable it suffices, by a standard result, to prove that Y is dense in X. If this is
not the case, then by Corollary .8 there exists f € Sx+» NY°. Thus for some n > 1
we have ||f — f,|| < 1/2 and consequently

[f(@n)l = [fa(@n)l = If = full >0,

which is a contradiction. Hence X is separable. ]

It follows that ¢' cannot be reflexive, since if it were then its bidual would have
to be separable and hence so would its dual. But we know that the dual of ¢! is
isometrically isomorphic to £*° and in particular non-separable. More generally, the
result shows that any separable normed vector with non-separable dual cannot be
reflexive. The next result gives another way of seeing why ¢!, and indeed many other
spaces, cannot be reflexive.

Theorem 6.4. Let X be a normed vector space. Then X is reflexive if and only if
X is complete and X* is reflexive.

PROOF. Suppose first that X is reflexive. Then X is isometrically isomorphic to its
own bidual, which is a Banach space, and hence X is necessarily complete. Suppose
that £ € X** and let f = £ o Jx, noting that f € X*. Then given ¢ € X** we have
by reflexivity of X that ¢ = Jx(x) for some x € X, and hence

(@) = &(xx) = f(x) = (Jxz)(f) = (Jx-F)(9),

so & = Jx«(f) and X* is reflexive.

Conversely, if X is complete and X* is reflexive, then the image Y = Jx(X) of
X under the isometry Jx is complete and hence closed in the bidual X**. Suppose
that £ € Y°. Then { = Jx«(f) for some f € X* and f(z) = (Jxx)(f) = &{(Jxx) =0
for all z € X. Hence f = 0 and therefore £ = 0, so Y° = {0}. By Corollary £.8 we
see that Y is dense in X**. Since Y is closed we have Y = X™* so X is reflexive. [

Using this result we see again that ¢! cannot be reflexive because it is (isomorphic
to) the dual of the non-reflexive space cy. A similar argument works for ¢>° and
indeed for any Banach space which is isomorphic to the dual of a non-reflexive
Banach space. Implicit in these statements is the observation that reflexivity is
preserved under isomorphism.

Proposition 6.5. Let X, Y be two normed spaces which are isomorphic. Then X
1s reflexive if and only if Y is.

PRrROOF. Let T € B(X,Y). For z € X and f € Y* we have

(T o Jx)(@)) () = (Jxa)(T"f) = f(Tz) = ((Jy o T)(x))(f),

and hence T**oJy = Jy oT. If T': X — Y is an isomorphism then 77T and 77!
are the identity operators on X and Y, respectively, and taking duals we see that
T* too is an isomorphism. Similarly 7%*: X** — Y** is an isomorphism. Thus Jx
is surjective if and only if Jy is surjective. O
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Remark 6.6. (a) An alternative, but much less direct, way of seeing that the dual
operator of any isomorphism is an isomorphism is to appeal to Theorem .10l

(b) The first part of the above proof establishes a general fact, namely that T**oJx =
Jy oT whenever X and Y are normed vector spaces and 7" € B(X,Y’). Thus the
following diagram commutes:

R T Yo
A

X —— Y

7 Convexity and smoothness of norms

Let X be a normed vector space. If z,y € Sx then %Hx + y|| <1, and equality is
possible even when x # y. We say that X (or its norm) is strictly convex if whenever
z,y € Sx are distinct then 3|z +y|| < 1. Let x: [0,2] — R be given by

_ =+l

6X(5):inf{1 5 :x,yESX7HH?—yH26}, 0<e<2.

We call 0x the modulus of convezity of X (or its norm). Note that %[z + y| <
1 — 6x(e) whenever z,y € Sx with ||z — y|| > . We say that X (or its norm) is
uniformly convex if dx () > 0 for all € € (0, 2]. Note that any uniformly convex space
is strictly convex, and in finite-dimensional spaces the two notions are equivalent. If

X is a Hilbert space it follows from the parallelogram law that

&2 1/2
(5X(€)Z].—<1—4> s OSES2,

and in particular every Hilbert space is uniformly convex. We will see on Problem
Sheet 3 that every uniformly convex Banach space is reflexive. However, strictly con-

vex Banach spaces are not in general reflexive. An equivalent definition of uniform
convexity is that whenever (x,) and (y,) are sequences in X such that

Jin + 3l

ol > 1 lgall > 1, 2

1, n— oo,

we have ||z, —yn| — 0 asn — B

Theorem 7.1. Suppose that X is a uniformly conver Banach space and let f €
X*\ {0}. Then there exists a unique x € Sx such that f(x) = |/ f].

29This is what we mean by saying that the map Jx is natural. Indeed, in the language of category
theory J provides a natural transformation from the identity functor to the functor **.

30As is often the case, it’ll be this sequential characterisation we want to use in proofs. To see
this claim, note that if uniform convexity fails, then there is some ¢ > 0 such that dx (e) = 0. From
the definition of the infimum defining dx (€)) we can find sequences (zn)me1, (yn)me1 in the sphere
with ||z — yn|| > €, and ||(zn + yn)/2|| — 1. Conversely, if the sequential condition fails, then
passing to subsequences, there is € > 0 and (zn)5%1, (Yn)ne1 in X with |[(zn + yn)/2|| — 1, but
|xn — yn|| > € for all n. By considering &, = zn/||zx|| and yn = yn/||yn||, one gets dx (e) = 0.
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PRrROOF. Let z, € Sx, n > 1, be such that f(x,) — ||f]| as n — oco. We show that
the sequence (x,,) is Cauchy. By completeness of X and continuity of f the existence
part then follows. Suppose not. Then there exist € > 0 and increasing sequences of
integers (ny), (my,) such that ||z, — 2m,|| > € for all k > 1. Let yp = (@, + 2m,),
k> 1. Then |yg|| < 1 for all & > 1 and f(yx) — ||f]| as k — oo. It follows
that ||yg]| — 1 as k — oo, so by uniform convexity ||z, — zm,|| = 0 as k — oo,
giving the required contradiction. For uniqueness, suppose that x,y € Sx are two
distinct vectors such that f(z) = f(y) = ||f]|. By uniform convexity we must have
+llz +y| <1 and hence

I71=£(252) < i <.

This contradiction completes the proof. ]

Remark 7.2. Note that for the uniqueness part strict convexity was sufficient. In
fact, it is not hard to show using Corollary [B.8 that X is strictly convex if and only if
every f € X*\ {0} attains its norm in at most one point z € Sx. On the other hand,
for the existence part of the theorem reflexivity of X would have been sufficient, as
will become clear from Remark below.

Thus in a uniformly convex space every functional attains its norm at a unique
vector in the unit sphere. We call the vector z above a norming vector for f, i.e.
x € X norms f € X*if ||z]| =1 and f(x) = || f].

We now consider the dual question, interchanging the roles of X and X*. Given
xg € X, Hahn-Banach (in the guise of Corollary [(.8) shows that for every zy €
X there exists a norming functional, that is to say a functional f € Sx= such
that f(xo) = Ha:0|| In general, norming functionals are non-unique even for non-
zero vectors xg, but again we have a geometric condition on X which gives rise to
uniqueness.

We say that a real normed vector space X (or its norm) is smooth at xo € X if

the limit
I |lzo + ha|| — ||zo|
1m

h—0 h
exists for all x € X. We say that X (or its norm) is smooth if it is smooth at all
zo € X \ {0}, or equivalently all gy € Sx. Note that no norm can be smooth at
0. Smoothness gives us uniqueness of norming functionals; we record a formally
stronger statement for use in the next statement.

Theorem 7.3. Let X be a real normed vector space such that for xo € X with
lzol| =1 and some p > 1, the limit

N e 0

im

h—0 ph

exists for all x € X. Then there is a unique norming functional f € Sx+ with
f(xo) = |lzol| given by

. Nlzo + ha|P — ||xol?
=1 .
J(x) = lim oh

3'In contrast without strict convexity norming vectors may not exist. Can you give an example
using ¢o and £17?
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In particular if X is smooth, then all non-zero vectors have unique norming func-
tionals.

PROOF. As observed above, existence of norming functionals follows from Corol-
lary 0.8l

Let f € Sx be a norming functional for g and fix x € X. Note that as f is
linear, we can use L’Hopital’s rule to compute

lim f(xo + ha)P — f(xzo)?

70 oh = flao)? ' f(w) = f(x),E2 (7.1)

On the other hand as ||f|| <1 and f(zg) = ||xol|, we have
f(wo + ha)? = f(xo) < [lzo + haf|” — [[zo][”.

So for h > 0,

fxo + ha)P — f(xo)? _ ||lwo + ha]]” — [|lzo][”
ph - ph
while for h > 0

f(xo + hx)? — f(xo)? S lzo + hal||P — [|zol|?
ph - ph )

Taking limits as h — 07 and as h — 0~ and using (Z.I)) gives that

fxo + ha)P — f(xo)? _ |lwo + ha||” — [|lzo]/”

f(z) = oh < oh

For the final statement, note that uniqueness of norming functionals for a vector
is invariant under non-zero scalar multiplication O

We will see on Problem Sheet 3 that uniqueness of norming functionals in fact
characterises smooth spaces Moreover, if X is a real normed vector space such
that the norm of X* is strictly convex then the norm of X is smooth, and similarly
if the norm of X* is smooth then the norm of X is strictly convex.

8 Lebesgue spaces

Let (,%, 1) be a measure space. For 1 < p < oo we denote by LP(Q, %, u), or
simply LP(£2), the vector space of all (equivalence classes of ) p-measurable functions
x: £ — F such that

[ 1O dute) < o0
Q

32For this to come out nicely we need f(zo) = ||zo|| = 1 — which I made a hash of by forgotting
to include in the hypothesis in lectures. Sorry.

331 retain the direct proof for the case when X is smooth (it’s basically the same as above). Given
any norming functional f € Sx» and any x € X we have

hf(z) = f(wo + hx) — ||lzol| < [[xo + hal| — [[zoll, heR.
Dividing by h # 0 and taking the limit as A — 04 now gives the result.

3450 given the p > 1 version of Theorem [Z3] in fact the norm is smooth.
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if 1 < p < oo and esssup;eq |2(t)| < 0o if p = co. If we endow LP(€2) with the norm

el = ( [, rm<t>|Pdu<t>)1/p

for 1 <p < oo and ||z||, = esssup,cq |z(t)| if p = oo, then LP(Q) is a Banach space.
For p = 2 it is a Hilbert space. If 1 < p < oo is given we will always take ¢ be the
Holder conjugate of p. We wish to show that for 1 < p < oo the dual of LP(Q) is
isometrically isomorphic to L?(§2). We already know this for p = 2, and also when
Q =N, ¥ is the power set of N and p is the counting measure, since in this case
LP(Q) = (P, 1 < p < co. A measure space (€2, %, u) is said to be o-finite if there
exists a countable family {€, € ¥ : n > 1} of measurable subsets of Q such that
p(§dn) < oo for all m > 1 and Q = J,,~; 2n. Note that by taking complements and
intersections we may assume that the sets Q,, n > 1, are mutually disjoint.

Proposition 8.1. Let 1 < p < oo and, if p = 1, assume that the measure space
(Q, %, n) is o-finite. Then the map ®,: LI(Q) — LP(Q)* given by

(By)(x) = /Q Oy du(t), = € L), y € L9,

18 a well-defined linear isometry.

Proor. It follows from Hoélder’s inequality that the integral defining ®,, exists and
that [(®py)(z)| < |lz|pllyllqy for z € LP(Q), y € LIY(Q). Since @,y is linear and
bounded with [|[®,y| < [lyllq for all y € L(S2), we see that ®, indeed maps into
LP(Q2)*. It is clear that ®, is a bounded linear operator with ||®,| < 1. We need to
show that ®, is an isometry. Suppose first that 1 < p < co and let y € L(f2) be
such that ||y||l, = 1. Tf 2(t) = |y(t)|72y(t) for t € Q such that y(t) # 0 and z(t) = 0
otherwise, then z € LP(Q) with [|z|[, = 1 and (Ppy)(z) = |yl|d = 1, so &, is an
isometry. Suppose that p = 1 and let y € L*°(Q) with ||y||cc = 1. Then for every
r € [0,1) the set Q. = {t € Q: |y(t)| > r} lies in ¥ and is non-null. By o-finiteness
there exists a measurable subset Q, C Q. such that 0 < u(Q,) < oco. Let

Then z, € L'(Q) with ||z,.||1 =1 and (®1y)(z,) > 7, so @1 too is an isometry. [

It remains to show that the operator @, is surjective when 1 < p < oo (this
is never the case for p = oo except when the space is finite-dimensional). As in
Proposition BTl the case p = 1 requires o-finiteness of the measure space; see Problem
Sheet 3. We restrict ourselves here to the case 1 < p < o0.

Recall that a function ¢ : R — R is convex if

p(Az + (1 = Ny) < Ap(z) + (1 — A)d(y),

forO< A< 1landa,y€ R It is strictly convex if equality only holds when x = y.
Recall too that differentiable convex functions have increasing derivative. For use

35This says that the area above the curve of ¢ is convex.
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in Theorem B3] if ¢ : R — R is convex and differentiable, then the function

B6)=00) 4
O W

is continuous@ and increasing. The example that matters to us is the function
¢(z) = |a + bz|P for a,b € R and p > 1. This is strictly convex (for b # 0) and has
¢'(x) = pbla + bx|P~ sgn(a + b:U)

Theorem 8.2. Suppose that 1 < p < co. Then the space LP () is uniformly convez.

PROOF. Let (z,) and (y,) be sequences in LP(Q) such that ||zn||p, [[ynlp, 3|20 +
Ynllp = 1 as n — oo. Let u, = %|£L‘n + yn| and v, = %]:Un — Yn|, n > 1. Then
|lunllp = 1 as n — oo and we need to show that |lv,|[, = 0 as n — co. Now

Ty + Yn| + |20 — ynll? Tn + Yn| — |Zn — Ynl|P
i+ anll + i — vl = [ Lt 0l lon Wl e 2] 2o =l

=Amax{|xn|,|yn|}p+min{\xn,|yn|}pdu

= llznllp + lynlly =2, n = oc.

By passing to subsequences if necessary we may assume that ||u, + vy, — a and
||un, — vn|lp = b as n — oo. Then a” 4+ bP = 2 and

2= QHILH;O [unllp < nlggo (llun + vallp + llun = vnllp) = a+0,

and hence

ap+bp< a+b p'
2 2

By strict convexity of the function ¢ — ¢? it follows that a = b = 1. Since

/Hxn‘i‘yn’+|xn_yn”pdu>/ ’xn+yn|p+|$n_yn‘pdu
Q 2P ~ Ja 2p ’

which is to say ||un, + va|[h > [Junllh + |vallh, we obtain that
0 < flonlly < llun +vally = llunll; =0, n — occ.
Thus by a standard subsequence argument the space LP(£) is uniformly convex. [J

From now on we will consider only the case F = R. However, the main result,
Theorem [B.4] below, remains true in the complex case and indeed it is possible to
deduce the complex case from the real case by decomposing into real and imaginary
parts not only the functionals in question but also the functions themselves.

Theorem 8.3. Suppose that 1 < p < oco. If xg € LP(Q) with ||xg||, = 1 then
f = ®,(y0), where yo = |wo|P"sgnwo, is the unique element f € LP(Q)* with
f(wo) =1 and || f]| = 1.

36hy differentiability
3THere, for h € R we let sgn h = %1 according as h = 0, and we let sgn0 = 0.
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PRrOOF. Certainly yg € L4(2). By Theorem [.3] we need to show that

h p _ p
(q)pyO)(x) _ }llm%) HJJO + 31‘2 ”‘TOHP7 = LP(Q)
%

For t € R, set

D )

yo(t)x(t), h = 0.

As ¢, is increasing and continuous, the monotone convergence theorem give@

lzo®)=hz®)P—|zo ) 4 4
(Zst(h) — { h 7&

h P _ p
tag 120 =00l iy [ o) = [ wiaduo. )

as required O

Theorem 8.4. Suppose that 1 < p < co. Then the map ®,: LI(Q) — LP(Q)* is an
isometric isomorphism. Furthermore, the space LP(Q) is reflexive.

PRrROOF. Let f € LP(Q)* have || f|| = 1. By TheoremB.2lthe space LP(£2) is uniformly
convex, and hence by Theorem [[T] there exists a (unique) function z¢ € LP(Q2) such
that ||zo|l, =1 and f(zo) = 1. It follows from Theorem B3] that f € Ran®,, so &,
is surjective and the first part follows from Proposition Bl In particular the map
(®,1)* 0 ®y: LP(Q) — LP(2)** is an isomorphism. If z € LP(Q) and f € LP(Q)*,
then f = ®,(y) for some y € L9(2) and hence

(@, 1)"(242)) () = (P42)(y) = /wadu = (®py) (@) = f(z) = (Jer()2)(f)-

Thus Jrrq) = (<I>Zj1)* o @, so Jpp() is surjective and hence LP((2) is reflexive. [

9 The weak and weak® topologies

Given a vector space X and a subspace Y of the algebraic dual X', we denote by
0(X,Y) the coarsest topology on X for which all of the functionals f € Y are
continuous. An equivalent definition of o(X,Y") is that it is the topology generated
by the basic open neighbourhoods

{zeX:|fe(z—azo)| <eforl<k<n},

38 consider separately the limit as h — 07 and h — 0~.

391 retain David Seifert’s alternative argument for this using the dominated convergence theorem:

As the function G: R — R given by G(h) = |h|P is differentiable with derivative G'(h) =
plh|P" sgnh, for each t € Q and h € R we may apply the Mean-Value Theorem to obtain
0 =0(t,h) € (0,1) such that

2o (t) + ha()]” = |o(t)[” + plzo(t) + Oha(t)|” " ha(t) sgn(wo(t) + Ohx(t)).

Note also that for |h| < 1 we have |zo + 0hz|[P~|z| < (Jzo| + |2|)P € L*(Q). Hence the Dominated
Convergence Theorem gives
[zo + hallp — [lzollp _
ph

/ |zo 4 Ohx|P™ 'z sgn(zo + Oha) dp — (Ppyo)(x), h — 0.
o
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where g € X, n € N, fi,...,fn, € Y and € > 0. If X is a normed vector space,
the case Y = X* is of particular interest, and we call o(X, X™*) the weak topology
on X. Another important special case is the so-called weak* topology o(X*, Jx (X))
on the dual space X*, which we also denote simply by o(X*, X). Note that a basic
weak*-open neighbourhood has the form

{feX*:|f(zk) — folzx)| <efor 1 <k<n},

where fo € X*, n € N, x1,...,2, € X and ¢ > 0. It is straightforward to verify
that both the weak and the weak* topologies are Hausdorff. We certainly have
o(X*,X) C o(X*, X*). Moreover, since any f € X* is norm-continuous on X,
and likewise any element of Jx(X) on X*, the weak and weak® topologies are no
finer than the norm topologies on X and X*, respectively. On finite-dimensional
spaces they coincide but, as we shall see in Proposition below, in the infinite-
dimensional setting the weak and weak™ topologies are always strictly coarser than
the norm topology. In fact, one of the main reasons for introducing the weak and
weak® topologies is that, unlike the norm topology, these coarser topologies can give
us a rich supply of compact sets even in infinite-dimensional spaces.

Let X be a normed vector space. Given a sequence (x,,) in X it is straightforward
to see that the sequence converges in the weak topology to a limit x € X if and
only if f(xz,) — f(z) as m — oo for all f € X*, which is precisely the notion of
weak convergence you may already know in the Hilbert space setting. Similarly,
a sequence (f,) in X* converges in the weak™ topology to a limit f € X* if and
only if fn(z) — f(z) as n — oo for all z € X. It follows from the Uniform
Boundedness Principle that any weakly convergent sequence is norm-bounded, and
if X is complete the same is true of any weak*-convergent sequence in X*. We say
that X has the Schur property if every weakly convergent sequence in X is norm-
convergent. If X = ¢y or X = P for 1 < p < oo then we see by considering the
sequence (e,) that X does not have the Schur property. The case p = 1 is different.

Theorem 9.1. The space £* has the Schur property.
Proor. This follows from a ‘gliding hump’ argument; see Problem Sheet 3. O

Recall that the topology of any metric space can be described in terms of se-
quences In general the weak and weak™ topologies are not metrisable (see Problem
Sheet 3) but we have the following result.

Proposition 9.2. Let X be a normed vector space.

(a) If X is separable then the relative weak™ topology on Bx~ is metrisable.
(b) If X* is separable then the relative weak topology on Bx is metrisable.

4In the generality of topological spaces it is not the case that the topology is determined by
sequential convergence. Indeed sequential compactness is not generally equivalent to compactness.
In the setting of topological spaces we sometimes use various generalisations of sequences in order
to describe topologies. In the Part C Analytic topology course, filters are used for this. Most
functional analysts prefer to use convergence of nets to play this role - this is essentially equivalent
to working with filters- one then gets results like a topological space X is compact if and only
if every net in X has a convergent subnet. The standard reference for this is Kelley’s ‘General
Topology’. Terminology warning: The nets used to generalise convergence sequences are not the
e-nets found in the next section!
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PRrROOF. For part (a) let {z;, : » > 1} be a dense subset of Bx and consider the map

n=1

The result in part (b) can be approached analogously or deduced from part (a). The
details are left as an exercise; see Problem Sheet 3. O

Remark 9.3. The converse statements in Proposition are also true; see Re-
mark [0.10 below for a proof in the case of part (a).

Given a linear map 7: X — Y between two vector spaces X and Y, the algebraic
dual operator T': Y' — X' of T is given by (T'f)(z) = f(Tx) for f € Y/ and z € X.
In particular, if X, Y are normed vector spaces and f € Y* then T'f = T*f.

Proposition 9.4. Let X and Z be vector spaces and suppose that Y s a subspace
of X' and W is a subspace of Z'.
(a) A functional f € X" is o(X,Y)-continuous if and only if f € Y.
(b) A linear map T: X — Z is o(X,Y)-to-o(Z,W)-continuous if and only if
T(W)CY.

PRrROOF. (a)If f € Y then f is 0(X, Y )-continuous by definition of ¢(X,Y’). Suppose
that f € X’ is 0(X,Y)-continuous and let U = {z € X : |f(x)] < 1}. Then U is a
o(X,Y)-open neighbourhood of zero so there exist n € N, f1,...,f, € Y and e >0
such that the basic o(X,Y)-open set V = {z € X : |fip(x)] < e for 1 <k <n} is
contained in U. Since (;_, Ker f €V C U we have by linearity that

n
ﬂ Ker f, C Ker f,
k=1

so f € span{fi,..., fn} CY by a result on Problem Sheet 1.

(b) It follows from the definition of o(Z, W) that a linear map 7: X — Ziso(X,Y)-
to-o(Z, W)-continuous if and only if foT: X — F is o(X,Y)-continuous for all
f € W, which by part (a) is equivalent to having 77(W) C Y, as required. O

Note that in particular the previous result says that if X is a normed space then
a functional f € X’ is weakly continuous if and only if f € X*. So the weakly
continuous functionals are precisely the continuous functionals. See exercise sheet 3
for an extension to maps.

Corollary 9.5. Let X be a normed vector space. Then o(X*, X) = o(X*, X*) if
and only if X is reflexive.

Recall that a subspace Y of a vector space X is said to have finite codimension
if dim X/Y < oo. Typical examples of finite-codimensional subspaces are annihila-
tors of finite-dimensional subspaces. Indeed, if Y is a finite-dimensional subspace of
a normed vector space X then by Corollary we have X*/Y° = Y* and hence
dim X*/Y*° < oo. Similarly, if Z is a finite-dimensional subspace of X*, then by a re-
sult on Problem Sheet 1 we have (Z,)° = Z and Corollary B I2 gives (X/Z,)* = Z. In
particular, X/Z, must be finite-dimensional. The proof of Proposition[@.4lshows that
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any basic weakly open neighbourhood of the origin contains a finite-codimensional
subspace, and an analogous argument works for the weak* topology As such, for
infinite dimensional spaces the weak and (weak® )topologies are genuinely weaker
than the norm topology.

Proposition 9.6. Let X be an infinite-dimensional normed vector space. Then
Sx is not weakly closed and Sx~ is not weak*-closed. In particular, o(X,X™) and
o(X*, X) are strictly coarser than the respective norm topologies.

ProOOF. We will show that 0 lies in the weak closure of Sx. Indeed, as in the proof
of Proposition we see that any weakly open neighbourhood U of 0 contains a
finite-codimensional subspace Y™ of the form Y = (;_, Ker fj, for some fi,..., f, €
X*. Since X is infinite-dimensional but dim X/Y < oo, Y must be non-trivial. In
particular, Y N Sy = Sy is non-empty and hence so is U N Sx, as required. The
argument for Sy« is completely analogous, and the final statement is then clear. O

Given a family {X, : « € A} of topological spaces we may view the product space
X =T],ca Xa as the space of all functions 2: A — |J,c 4 Xa such that z(a) € X,
for all « € A. We may endow X with the product topology, which is the coarsest
topology for which all of the maps p,: X — X,, @ € A, are continuous, where
pa(z) = x(a) for a € A,z € X. Tt is not hard to see that if X, is Hausdorff for each
«a € A then so is the product space with the product topology. The corresponding
statement for compactness is far less obvious. The following result is proved in
C1.3 Analytic Topology; it is equivalent to the Axiom of Choice[

Theorem 9.7 (Tychonoff). Let {X, : a € A} be a family of topological spaces
and suppose that X, is compact for each o € A. Then the product space endowed
with the product topology is also compact.

We use Tychonoff’s theorem to obtain weak*-compactness of the unit ball.

Theorem 9.8 (Banach-Alaoglu). Let X be a normed vector space. Then Bx~ is
weak* -compact.

PRrROOF. For z € X let D, = {\ € F: |\| < ||z||}, noting that each D, is compact,
and let K = ] .y D, be endowed with the product topology. Then By: C K
and the topology on Bx» induced by the product topology is precisely the weak*
topology. Note that K is compact in the product topology by Tychonoff’s Theorem.
Hence in order to prove that Bx~ is weak*-compact it suffices to show that it is closed
in K. Now K is simply the set of all functions f: X — F such that |f(z)| < ||z for
all x € X, and Bx+ consists precisely of those elements of K which are linear. For
z,y € X and A € F let &, , : K — FF be the map defined by

Puya(f) = fle+dy) — f(@) = Af(y), [feK,

and note that Bx+ = () {@;; L({0}) s,y € X, X € F}. It follows from the definition
of the product topology that the map ®, ,  is continuous on K for every z,y € X
and A € F, so Bx+ is closed in K, as required. ]

4INote that in the case when X is finite dimensional, this finite codimensional subspace could be
the zero subspace.

42Tt can also be proved using nets, when the proof is reminiscent of the diagonal argument used
to prove that a countable product of compact metric spaces is compact, albeit with a Zorn’s lemma
maximality argument in place of a diagonal sequence argument.
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Given a compact topological space Q2 we write C'(2) for the Banach space of
scalar-valued continuous functions, endowed with the supremum norm.

Corollary 9.9. Given any normed vector space X there exists a compact Hausdorff
space S such that C(Q) contains a subspace which is isometrically isomorphic to X.

Proof. We may take 2 = Bx» with the subspace topology induced by the weak*
topology on X*. Then 2 is Hausdorff and, by the Banach-Alaoglu Theorem, it is
compact. Moreover, the map T: X — C(Q) given by (Tz)(f) = f(z) for z € X,
f € Q, is a well-defined linear operator, and by Corollary 5.8 it is an isometry. [

Remark 9.10. By Proposition [0.2(a) we may take Q to be a compact metric space
if X is separable, and in fact, by the so-called Banach-Mazur Theorem, we may even
take Q = [0,1] in this case Since C(2) is separable whenever € is a compact
metric space we see that Corollary implies the converse of Proposition @.2](a).

Theorem 9.11 (Hahn-Banach Separation Theorem, weak* version). Let X
be a normed vector space and suppose that C' is a non-empty convex subset of X*

and that fo € X*\ C.
(a) If C is weak*-open, then there exists x € X such that

Re fo(xz) > Re f(z), feC.
(b) If C is weak*-closed, then there exists x € X such that

Re fo(z) > sup{Re f(z) : f € C}.
PROOF. (a) Since C is in particular open in the norm topology, Theorem [5.9implies
the existence of a ¢ € X™* such that Re ¢(fp) > Re¢(f) for all f € C. Let go € C.
Then there exists a basic weak*-open neighbourhood U of zero such that go+U C C.

Suppose that
U={feX":|f(zx)| <efor 1 <k<n}

for somen € N, z1,...,z, € X and € > 0. Then in particular

Re ¢(fo) > Red(go) + Red(f), feU.

IfY =(,_, Ker Jx(z), then Y C U and because Y is a vector space we must have
Y C Ker ¢. It follows that ¢ € span{Jx(z1),...,J x(xn)} C Jx(X), as required.

(b) Since C is in particular closed in the norm topology, Theorem (.9 implies the
existence of a ¢ € X such that Red(fo) > supsec Re¢(f). Choosing U to be
a basic weak*-open neighbourhood of zero such that fo ¢ C + U, it follows as in
part (a) that ¢ € Jx(X). O

430ne way to obtain this is via th Hausdorff-Alexandroff theorem that every compact metric space
is a continuous image of the Cantor set Z (a number of self contained short proofs of this can be found
online). Given a continuous surjection Z — Q we obtain an isometric embedding C(Q2) — C(2).
So to complete the argument we just need an isometric embedding T : C(Z) — C]0,1]. We
get this by regarding the Cantor set Z as the usual middle thirds Cantor set. Given f € C(Z),
we extend it to T'f on [0,1] by interpolating over the removed intervals as follows. For each
t € 10,1]\ Z, ¢ lies in a unique removed middle third interval (a¢, b:), where a; = sup{a € Z : a < t}
and by = inf{b € Z : b > z}, and we can write t = Aaz + (1 — \by) for 0 < Ay < 1. Then
define (T'f)(t) = A f(at) + (1 — A¢) f(be). This is readily checked to give an isomorphic embedding
c(Z) — Co,1].
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Corollary 9.12. Let X be a normed vector space and let Y be a subspace of X*.
Then (Y,)° coincides with the weak* closure of Y.

PRrROOF. Let C' denote the weak® closure of Y, noting that C' is a vector space and
hence convex. It is clear that Y C (Y;)° and that

(Vo) = { Ker Jx(2) : 2 € Yo }

is weak*-closed, so C' C (Y;)°. Suppose that fo € X*\ C. By Theorem there
exists x € X such that Re fo(z) > sup ;e Re f(z). Since C' is a vector space this in
particular implies that f(x) =0 for all f € Y and hence x € Y,. Since fo(z) # 0 we
deduce that fo & (Y5)°, so (Y5)° C C, as required. O

In particular for a normed space X, Jx(X) is weak*-dense in X**, as Jx(X)o, =
{0}. However this is not particularly useful, as it doesn’t allow one to control norms,
that is if we approximate operators in X** in the weak*-topology by those in Jx (X),
we want to do so with norm control. Goldstine’s theorem enables to do this.

Theorem 9.13 (Goldstine). Let X be a normed vector space. Then Jx(Bx) is
weak’-dense in Bxxx.

PRrROOF. Let C be the weak* closure of Jx(Bx), noting that C' is convex. By
the Banach-Alaoglu Theorem Bxs+ is weak®-compact. Since the weak® topology
is Hausdorff the set Bxs+ is weak*-closed, and hence C' C Bx++. Suppose that
¢ € X**\ C. By Theorem there exists f € X* such that

Re¢(f) > sup{Re(f) : ¢ € C} > sup{Re f(z) : € Bx} = |[Re f|| = || fII.
It follows that ||¢|| > 1, so Bx++» C C and the result follows. O

Theorem 9.14. Let X be a normed vector space. Then X is reflexive if and only
if Bx 1s weakly compact.

PrOOF. Consider the usual map Jx: X — X* given by (Jxz)(f) = f(x) for
feX* ze X, and let Y = Jx(X). If U is a basic weakly open subset of X
then Jx(U) =V NY for a basic weak*-open subset V' of X** while if V' is a basic
weak*-open subset of X** then J )_(l(V NY) is a basic weakly open subset of X. It
follows that Jy is a homeomorphic embedding from X with the weak topology onto
Y with the subspace topology induced by the weak® topology on X**.

Suppose first that X is reflexive. Then Jx(Bx) = Bx+ and Bx = J)_(l(BX**).
Since Bxs+ is weak*-compact by the Banach-Alaoglu Theorem, we see that Bx
is weakly compact. Conversely, if Bx is weakly compact then Jx(Bx) is weak*-
compact and hence weak*-closed in X**, because the weak* topology is Hausdorff.
By Goldstine’s Theorem Jx (Bx) is weak*-dense in Bx++ and hence Jx(Bx) = Bx»,
so Jx is surjective and consequently X is reflexive. O

10 Compactness in normed vector spaces

Let (X, d) be a metric space. Given a subset M of X we define the diameter of M as
diam M = sup{d(z,y) : z,y € M}. We say that a subset M of X is totally bounded
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(or precompact) if for every € > 0 there exists a finite cover of M by sets of diameter
at most . This is equivalent to the existence, for every € > 0, of a finite set F* C M
such that dist(z, F) < ¢ for all & € M, which is to say that M C |J,.p B (z,¢).
Such a set F' is said to be an e-net for M. The set M is said to be relatively compact
if its closure in X is compact. Any relatively compact subset is totally bounded and
it is easy to see that M is totally bounded or relatively compact if and only if its
closure is. We say that X is sequentially compact if every sequence with terms in X
has a subsequence which converges to an element of X.

Theorem 10.1. Let (X, d) be a metric space. Then the following are equivalent:
(a) X is compact;
(b) X is complete and totally bounded;
(c) X is sequentially compact.

PRrOOF. It is a standard fact in point-set topology that a metric space is compact
if and only if it is sequentially compact and that any compact space is complete.
Moreover, any compact space is totally bounded. A standard diagonal selection
argument shows that in a totally bounded set any sequence has a Cauchy subse-
quence, and in fact the converse holds as well. Hence if a space is totally bounded
and complete then it must be sequentially compact. O

Remark 10.2. Suppose that X is a normed vector space such that X* is separable.
Then Bx with the relative weak topology is a metric space by Proposition[0.2] so by
Theorem [I0.1] it is compact if and only if it is sequentially compact. It follows from
Theorem that X is reflexive if and only if every bounded sequence has a weakly
convergent subsequence. In fact, this statement is true even without the assumption
that X* is separable, and this follows from the so-called Eberlein-Smulian Theorem,
which states that weak compactness is equivalent to weak sequential compactness
for subsets of arbitrary normed vector spaces. The Eberlein-Smulian Theorem is
not part of this course, but note that the proof of one implication relies a diagonal
selection argument similar to the one commonly used to show that every bounded
sequence in a Hilbert space has a weakly convergent subsequence.

Theorem [I0.1] has the following important consequence.

Corollary 10.3. Let (X,d) be a complete metric space and let M C X. Then M is
relatively compact if and only if it is totally bounded.

Suppose now that X is a normed vector space. If X is finite-dimensional and
M C X then by the Heine-Borel Theorem M is compact if and only if it is closed
and bounded, and hence M is totally bounded if and only if it is bounded. In general
totally bounded sets can be approximated by finite dimensional subspaces as follows.

Proposition 10.4. Let X be a normed vector space and let M C X. Then M
18 totally bounded if and only if M is bounded and for every € > 0 there exists a
finite-dimensional subspace Y of X such that dist(z,Y) < e for allx € M.

PROOF. Suppose first that M is totally bounded. Then M is bounded and, given
g > 0, we may let F¥ C M be a finite e-net for M. Letting Y = span F' we have
dimY < |F| and dist(x,Y’) < € for all x € M, as required. Conversely, suppose that
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M is bounded and, given € > 0, let Y be a finite-dimensional subspace Y of X such
that dist(z,Y) < ¢/2 for all x € M. Let r > 0 be such that M C Bx(r) and note
that the set K = By (r +¢/2) is compact by the Heine-Borel Theorem. Let F be a
finite §-net for K. Then given z € M we may find y € Y such that ||z — y| < /2.
Since y € K there exists z € F such that ||y — z|| < £/2 and hence ||z — z| < e.
Thus M is totally bounded. O

Lemma 10.5 (F. Riesz). Let X be a normed vector space and suppose that'Y is a
proper closed subspace of X. Then for any § € (0,1) there exists x € Sx such that
dist(z,Y) >1-96.

Proor. By Corollary there exists f € Sy~ NY*°. Given ¢ € (0,1) we may find
x € Sx such that |f(z)| > 1 — 4, and then for y € Y we have

|z —yll = [f(z—y)| = [f(=) >1-0.
Thus dist(z,Y) > 1 — §, as required. O

Remark 10.6. The conclusion of Lemma in general becomes false if we allow
0 = 0. However, using Theorem [Tl we may show the result remains valid even
with § = 0 if X is uniformly convex, and by a simple application of the Heine-Borel
Theorem the same is true when Y is finite-dimensional.

Corollary 10.7. Let X be a normed vector space. Then Bx is totally bounded if
and only if X is finite-dimensional.

Proor. If Bx is totally bounded and ¢ € (0,1) then by Proposition [[0.4] there
exists a finite-dimensional subspace Y of X such that dist(z,Y) < ¢ for all x € By.
If Y C X then by Riesz’s Lemma applied with 6 = 1 — € there exists x € Bx such
that dist(z,Y’) > ¢, a contradiction. Hence Y = X, so X is finite-dimensional. Con-
versely, if X is finite-dimensional then by the Heine-Borel Theorem Bx is compact
and in particular totally bounded. O

We now turn to characterisations of totally bounded subsets, or equivalently
of relatively compact subsets, in two classical Banach spaces. Given a compact
topological space €2 and a subset M of C(2), we say that M is equicontinuous if for
every € > 0 and t € () there exists an open neighbourhood U of ¢ in € such that
|z(s) —z(t)] <eforall z€ M and all s € U.

Theorem 10.8 (Arzela-Ascoli). Let Q2 be a compact topological space and suppose
that M is a subset of C(2). Then M is relatively compact if and only if it is bounded
and equicontinuous.

PROOF. Suppose that M is relatively compact. Then M is totally bounded, in
particular bounded, and given ¢ > 0 we may find a finite §-net F' C M for M.
Suppose that t € (). For each z € F' there exists an open neighbourhood U, of
t in Q such that |z(s) — z(t)| < ¢/3 for all s € U,. Let U = (),cp Uy, which is
another open neighbourhood of ¢ in 2. Given x € M we may find y € F' such that
lx — ylloo < €/3 and, for s € U, we have

() —2@)] < |2(s) —y(s)| + ly(s) —w(®)] + [y(t) —z(B)] <e.
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Thus M is equicontinuous.

Conversely, suppose that M is bounded and equicontinuous, and let ¢ > 0.
Since M is equicontinuous there exists, for each ¢t € ), an open neighbourhood
U of t in Q such that |z(s) — x(t)| < ¢/3 for all z € M and all s € U;. Then
{U : t € Q} is an open cover of 2. By compactness of 2 we may select a finite
subcover {Uy, : 1 <k <n}. Let T: C(2) — (F",|| - ||o) be given by

Tz = (z(t1),...,z(ty)), =€ C(Q),

and let S = T(M ) Then by boundedness of M the set S is a bounded, and
therefore totally bounded, subset of (F",|| - ||oc). Let F' C M be a finite set such
that T'(F) is an §-net for S and suppose that x € M. Then there exists y € F such
that |x(ty) — y(tx)] < ¢/3 for 1 < k < n. Given t € Q we have t € Uy, for some

ke€{1,...,n} and hence
[2(t) —y(@)] < |x(t) — x(te)| + |z(tr) — y(e)| + |y(tr) —y(@)] <e.
Thus M is totally bounded and hence, by Corollary [I0.3], relatively compact. O

Example 10.9. Given k € L'(0, 1), consider the the set

M= {t - /Otk:(s)x(s) ds: o e C((0,1]), ] < 1}.

It can be shown that for every e > 0 there exists § > 0 such that [ |k(s)|ds < e for all
intervals I C [0, 1] of length less than 6. Hence M is a bounded equicontinuous subset
of C([0,1]). By the Arzela-Ascoli Theorem M is relatively compact in C([0, 1]).

In LP(R™), totally bounded sets are characterised by the Kolmogorov-Riez-
Fréchet theorem, which is proved in C4.3 (Functional Analytic Methods for PDEs).

Theorem 10.10 (Kolmogorov-Riesz-Fréchet). Let 1 < p < 0o and n > 1, and
suppose that M C LP(R™). Then M is relatively compact if and only if M is bounded,

/ |z(t)[Pdt =0 as R — oo and / |z(s +t) —z(t)[Pdt — 0 as |s| — 0,
>R n

uniformly over x € M.

11 Compact operators

Given two normed vector spaces X, Y and a linear operator T: X — Y, we say
that T is a compact operator if the set T'(Bx) is relatively compact in Y. Thus T’
is compact if and only if for every bounded sequence (x,) in X the sequence (Tx,)
in Y has a convergent subsequence. We write K(X,Y") for the set of compact linear
operators T: X — Y and we let (X) = K(X,X). Notice that if T" is compact
then the closure of T'(Bx) is in particular bounded, so T is bounded and hence
K(X,Y)CB(X,Y).

44Notice the technique in this proof of approximating M by T (M), in a finite dimensional space.
While part of a ‘3e-argument here, finite dimensional approximations of this nature are ubiquitous
in functional analysis.
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Example 11.1. (a) If X, Y are normed vector spaces and T € B(X,Y') has finite
rank, which is to say that dimRanT < oo, then 7' € K(X,Y). Indeed, T(Bx) is a
bounded and hence relatively compact subset of the finite-dimensional space RanT'.

(b) If X is a normed vector space then by Corollary [[0.7] the identity operator on
X is compact if and only if X is finite-dimensional.

(c) Let X = C([0,1]) and k € L'(0,1). Then by Example the integral operator
t
(Tz)(t) = / k(s)x(s)ds, xze€ X, 0<t<1,
0

is compact. Integral operators are important in the theory of differential equations.

Proposition 11.2. Let X and Y be normed vector spaces.

(a) The set K(X,Y) is a subspace of B(X,Y), and it is closed if Y is complete.

(b) If T e K(X,Y) and R € B(Y,Z), S € B(W,X), where W and Z are normed
vector spaces, then RT'S € K(W, Z).

PROOF. (a) Suppose that S, T € K(X,Y) and that A € F. Let L and M denote the
closures or S(Bx) and T'(Bx), respectively. Then L and M are compact and so is
the set K = L + |A|M. Since (S + )\Q(BX) C K, we see that S+ AT € £(X,Y),
so K(X,Y) is a subspace of B(X,Y)[2 It remains to show that it is closed if YV is
complete. Suppose that T' € B(X,Y) lies in the closure of £(X,Y), and let € > 0.
Then there exists S € (X, Y) such that ||S — T'|| < ¢/3. Since S is compact there
exists a finite set /" C By such that S(F') is an §-net for S(Bx). Given x € Bx we
may find y € F such that ||Sz — Sy|| < ¢/3, and hence

[Tz =Tyl < [|T = Slll«]| + Sz = Syl + 1S = Tlllyll <e.

It follows that T(Byx) is totally bounded, so by completeness of ¥ and Corol-
lary 03] it is relatively compact and hence T' € K(X,Y). Thus K£(X,Y) is closed
in B(X,Y)H

(b) Let » = ||S|| and B = Bx(r), and note that S(By) C B. Letting K denote
the closure of T'(B) we see that K is a compact set containing 7'S(Byy ), and hence
RTS(By) is contained in the compact set R(K), so RT'S € K(X,Y). O

Corollary 11.3. Let X be a normed vector space and Y a Banach space, and let
T € B(X,Y). Suppose there exist finite-rank operators T,, € B(X,Y), n > 1, such
that ||T,, = T|| = 0 asn — oco. Then T € K(X,Y).

45 Alternatively one can prove this using a subsequence argument, as in lectures,

46Here too a subsequence argument can be used. Suppose that (7,)5%; is a sequence in K(X,Y)
converging to T' € B(X,Y). Let (xm)m=1 be a bounded sequence in X. By a diagonal sequence
argument, we can find a subsequence (Y )=y of (2,)3%; such that (Th(Ym))m=1infty converges

for all n € N. (In more detail, use compactness to find a subsequence (xs,ll))m of (zm) such that

(Th (mg,?))m converges, then use compactness to find a subsequence (zg))m of (a:i,l)) such that
(T (xg)))m converges. Carry on in this way and set ym, = z4"; the m-th element of the m-th
subsequence). We claim (T (ym))m=1 is Cauchy. Indeed let K = sup,, ||z||, and given ¢ > 0 find n
such that [|T—T,|| < ¢/(3K). Then find mg such that for m1, ma > mao, || Tn(Ym: ) —Tn(Ym,) || < €/3.

Then for m1,m2 > mo, |T(Yym,) — T(ym,)|| < €, as claimed. As Y is complete, T' is compact.
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Remark 11.4. P. Enflo (1973) gave an example of a separable reflexive Banach
space X for which there exists a compact operator T' € K(X) such that 7" cannot
be approximated by finite-rank operators. However, we will see on Problem Sheet 4
that the converse of Corollary does hold on many spaces

Recall that a closed finite codimensional subspace Y of a normed space X is
complemented. So there is a finite dimensional subspace Z and a projection P :
X — Y with ker P = Z, such that © = Pz + (z — P;). The control we get on
the decomposition x = Pz 4 (x — Px) as a sum of elements in Y and Z depends
on the norm of P. The lemma below enables us to get uniform control on such a
decomposition — independent of ¥ — though note that in this lemma Z is not a
complementing subspace of Y.

Lemma 11.5. Let X be a normed vector space and let' Y be a closed finite-codimen-
stonal subspace of X. Then for every € > 0 there exists a finite-dimensional subspace
Z of X such that every x € X can be expressed asx =y +z withy €Y, z € Z and
Iz < 1+ &)=

PROOF. Let 0 < & < &(2+¢)”". Since dim X/Y < oo the open unit ball BY - is
totally bounded. Let m: X — X/Y be the canonical quotient map. Then 7(B%) =
Bg(/y and hence there exist z1,...,z, € B% such that {m(z;) : 1 < k < n} is
a o0-net for By Let Z = span{zy : 1 < k < n}. Then Z is complete and
Lemma applied to the restricted operator m|z: Z — X/Y shows that B% Y -
m(By((1 —6)7Y)). Let x € X. If z = 0 we may take y = z = 0, so we assume that
x # 0. Then the vector zg = |lz||~'(1 + §) ' satisfies ||zo|| < 1, so there exists
20 € By((1 —6)71) such that m(z0) = m(z0). Let 2 = (1 + §)||z|/20. Then z =y + 2
for some y € Y and by our choice of § we have ||z|| < (1 + ¢)||z]|. O

Theorem 11.6. Let X and Y be normed vector spaces and suppose that T €
B(X,Y). Consider the following statements:

(a) T is a compact operator;
(b) For every e > 0 there exists a finite-dimensional subspace Z of Y such that
|mz o T|| <e, where nz: Y — Y/Z denotes the canonical quotient operator;

(c) For every e > 0 there exists a closed finite-codimensional subspace W of X
such that ||T|w| < e.

Then (a) = (b) = (¢), and if Y is complete then (c) = (a).

Proor. If T is compact, then T'(Bx) is totally bounded, so by Proposition [0.4]
there exists, for every € > 0, a finite-dimensional subspace Z of Y such that
|mz(Tx)|| = dist(Tx, Z) < ¢ for all x € Bx, and hence ||[rzoT|| <¢, so (a) = (b).

If (b) holds and € > 0, let Z be a finite-dimensional subspace of Y such that ||rzo
T|| < e/3. Then Z° is closed and has finite codimension in Y*, so by Lemma
there exists a finite-dimensional subspace V' of Y* such that every f € Y* can be
expressed as f = g+ h with g € Z°, h € V and ||h]| < 2| f]]. It follows that
llgll < 3||f]|.- Let W = T*(V),, noting that W is closed and has finite codimension

4"In particular it holds for all spaces with a Schauder basis, as in Section [3 so all classical
sequence spaces.
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in X. Suppose that x € W and f € By+. We may write f = g + h as above, and
then for any z € Z we have

[f(Tx)| = T"(g + h)(2)| = [9(Tx)| = |g(Tx + 2)| <3| Tz + z].

Taking the infimum over all z € Z we see using Corollary B.8 that ||Tz| < ¢||z||,
and hence ||T|w| <e. Thus (b) = (c).

Finally, suppose that (c¢) holds and assume that Y is complete. Given ¢ > 0,
let W be a closed finite-codimensional subspace of X such that ||T|w| < ¢/3. By
Lemma [IT.5] there exists a finite-dimensional subspace V' of X such that every v € X
can be expressed as © = v +w with v € V, w € W and ||v|| < 2||z|. It follows that
||lw| < 3|lz|. Let Z = T(V), noting that Z is a finite-dimensional subspace of Y.
Given = € Bx, we may write x = v + w as above, and then

dist(Tx, Z) < || Tz — To|| < ||T|wll|w| < e.

Hence the bounded set T'(Byx) is totally bounded by Proposition [0.4l By complete-
ness of Y and Corollary [[0.3] we see that 7" is a compact operator, so (¢) = (a). O

Theorem 11.7 (Schauder). Let X and Y be normed vector spaces, and suppose
that T € B(X,Y). If T is compact then so is T*, and if Y is complete then the
converse also holds.

PROOF. Suppose that T is compact and let € > 0. By Theorem [[T.6] there exists
a finite-dimensional subspace Z of Y such that |7z o T|| < e. Then W = Z° is a
closed finite-codimensional subspace of Y*. Let f € W, x € X and z € Z. Then

T f (@) = |f(Tx + 2)| < [ fIII Tz + =],

and taking the infimum over all z € Z we obtain that |7 f(z)| < €| f||||z]]. Hence
IT*|w|| < e, so by completeness of X* and Theorem [[T.6] we see that 7™ is compact.

Conversely, suppose that 7™ is compact and that Y is complete. Let € > 0. By
Theorem there exists a finite-dimensional subspace Z of X* such that |7z o
T*|| < e. Then W = Z, is closed and of finite codimension in X. Let x € W,
f € By~ and g € Z. Then

[f(Tx)| = [(T*f + g)(@)| < [ITf + glll]l;

and taking the infimum over all g € Z gives |f(Tx)| < ellz||. It follows from
Corollary 5.8 that ||T|w| < e and hence T is compact by Theorem O

Remark 11.8. An alternative way to prove the converse statement is to observe
that if 7% is compact then by the first part the operator T%*: X** — Y™** is again
compact. Now T** o Jx = Jy o T, so Jy(T(Bx)) C T**(Bx=+~), which is totally
bounded. Since Jy is an isometry it follows that T'(Bx) is totally bounded and
hence, by completeness of Y and Corollary [0.3] T'(Bx) is relatively compact.
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12 Fredholm theory

Let X and Y be Banach spaces and suppose that T' € B(X,Y). One is often
interested in finding solutions x € X of an equation of the form

Tz =y, (12.1)

where y € Y is a given vector. The problem has a solution if and only if y € Ran T,
and we know from Remark [5.1T] that the closure of RanT coincides with (Ker7™),.
In particular, if RanT is closed then we have a criterion for our problem to have a
solution, namely that f(y) = 0 for all f € KerT™.

Theorem 12.1 (Closed Range Theorem). Let X and Y be Banach spaces and
suppose that T € B(X,Y). Then RanT is closed if and only if RanT* is closed.

PRrROOF. Define the operators : X — RanT and S: RanT — Y by Qx = Tz,
x € X, and Sy = y, y € RanT, so that T' = S o Q. If RanT is closed, then
by the Open Mapping Theorem () is a quotient operator. Conversely, if @ is a
quotient operator then Ran T is isomorphic to the Banach space X/ Ker T, so RanT
is complete and therefore closed. Thus Ran T is closed if and only if ) is a quotient
operator. By Theorem [B.I0 the latter is equivalent to Q* being an isomorphic
embedding. But Ker @* = (Ran@)° = {0}, so @* maps bijectively onto its range. If
Q" is an isomorphic embedding, then Ran Q™ is closed, while if Ran Q* is closed then
by the Inverse Mapping Theorem Q* is an isomorphic embedding. Thus Q* is an
isomorphic embedding if and only if Ran Q* is closed, and therefore Ran T is closed if
and only if Ran Q* is closed. Note that the operator S is an isomorphic embedding,
so by Theorem [B.10 its dual S* is a quotient operator and in particular surjective.
Since T* = Q* o §* we see that RanT™ = Ran QQ*, so the result is proved. O

Remark 12.2. It follows from a result on Problem Sheet 3 that RanT is norm-
closed if and only if it is weakly closed. The above proof shows that if RanT
is closed then @ is a quotient operator, and hence by Remark B.I1] we see that
RanQ* = (Ker@)°. But Ran@Q* = RanT* and Ker@ = KerT, so we obtain
a further equivalent condition for closedness of RanT and RanT™, namely that
RanT* = (KerT)°. Thus by Corollary we see that RanT™* is norm-closed if
and only if it is weak*-closed.

If X and Y are Banach spaces and 7" € B(X,Y) we say that T is a Fredholm
operator if KerT is finite-dimensional and RanT" has finite codimension in Y. We
know from Problem Sheet 2 that any such operator must have closed range. If T is
Fredholm we define the index of T as

ind7 = dimKerT — dimY/RanT.

Example 12.3. (a) Any invertible operator between two Banach spaces is Fred-
holm with index zero.
(b) Let X = ¢! and define the left-shift 7 € B(X) by Tx = (x2,23...) for
x = (z,) € X. Then T* for each integer k > 0 is Fredholm with ind T* = k.
(¢) If X and Y are finite-dimensional normed vector spaces, then every linear
operator T': X — Y is Fredholm and moreover, by the Rank-Nullity Theorem,

indT =dimKerT —dimY +dimRan7T = dim X — dimY.
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Proposition 12.4. Let X and Y be Banach spaces and suppose that T € B(X,Y).
Then T is Fredholm if and only if T* is Fredholm, and if both operators are Fredholm
then indT + ind T = 0.

PROOF. Exercise; see Problem Sheet 4. ]

Theorem 12.5. Let X and Y be Banach spaces and suppose that T € B(X,Y). If
T is Fredholm then there exist a closed finite-codimensional subspace V of X and a
finite-dimensional subspace W of Y such that X = KerT &V andY = RanT & W
topologically, and moreover T|y maps V isomorphically onto RanT. Conversely, if
there exist closed finite-codimensional subspaces V of X and Z of Y such that Ty
maps V isomorphically onto Z, then T is Fredholm and

ind 7 = dim X/V — dimY/Z.

PRrROOF. Suppose that T is Fredholm. The existence of V' follows from a result on
Problem Sheet 2 and the existence of W is also clear. Then T'|yy maps V' bijectively
onto the Banach space RanT', so by the Inverse Mapping Theorem it does so iso-
morphically. Suppose now that V' and Z are as described. Then KerT' NV = {0},
so KerT is finite-dimensional, and Z C RanT, so Y/RanT is finite-dimensional.
Hence T is Fredholm. We may find a finite-dimensional subspace U of X such that
X=KerT@V®U. Then RanT =T(VaU)=2Z2aT{U) and dimT(U) = dimU
since T'|y gy is injective. Thus

dimKerT =dim X/(V & U) = dim X/V — dim U

and
dimY/RanT =dimY/(Z®T(U)) =dimY/Z — dim U,

and the result follows. O

From the point of view of solving the equation (I2.1)) Fredholm operators are
particularly nice because they lead to criteria involving only finitely many conditions,
both for existence and uniqueness of solutions. Indeed, we have that RanT =
(KerT™), and Corollary shows that Ker7* = (Ran7)° = (Y/RanT)*. In
particular, Ker 7™ is finite-dimensional. Thus given y € Y equation ([I2]) has a
solution x € X if and only if fr(y) =0, 1 <k < n, where {f : 1 < k < n} is a basis
for Ker T™. Moreover, there exists a closed subspace V of X such that X = KerT®V,
and the solution is unique subject to = € V. Since V is closed we have V = (V°),,
and Corollary (.12 shows that V° = (X/V)*. Thus dim V° = dim X/V = dim Ker T,
so V° is finite-dimensional and the solution z € X to (IZI) is unique subject to
ge(z) =0, 1 <k <m, where {gr : 1 <k <m} is a basis for V°.

Recall that the collection of isomorphisms between Banach spaces X and Y is
open in B(X,Y). Indeed, if T € B(X,Y) is an isomorphism and if S € B(X,Y) is
such that ||S]| < ||| ~!, then as n — oo the partial sums

S (=pRTTs T o,
k=0

converge (absolutely) in the norm of B(Y, X) to the inverse of T+ S, so T+ S is
also an isomorphism. In particular, isomorphisms form an open subset of B(X,Y).
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Theorem 12.6. Let X and Y be Banach spaces. Then the set of Fredholm operators
is an open subset of B(X,Y), and moreover the index map is locally constant, and
in particular continuous, on the set of all Fredholm operators.

PrOOF. Let T' € B(X,Y) be a Fredholm operator. By Theorem there exist a
closed finite-codimensional subspace V of X and a finite-dimensional subspace W
of Y such that X = KerT @V and Y = RanT @& W topologically, and T'|y is an
isomorphic embedding. Consider the space V x W endowed with the co-norm and,
given S € B(X,Y), let Qg: V x W — Y be given by Qg(z,y) = Tx + Sz + vy
for x € V, y € W. Then @ is an isomorphism and [|Qo — Qs| = ||IS|v| < |I5],
S € B(X,Y). Thus for ||S|| < ||Qy']|~" the operator Qg is again an isomorphism.
In particular, if we let Z = (T + S)(V) then (T'+ S)|y maps V isomorphically onto
Z. Moreover, by bijectivity of Qg we have Z @ W =Y, so Z has the same finite
codimension in Y as RanT'. It follows from Theorem that T+ S is Fredholm
and that

ind(T+S) =dim X/V —dimY/Z =dimKerT — dimY/RanT = ind T,
which completes the proof. O

Remark 12.7. Note that by the above proof we have ind(T + S) = indT and
dimY/Ran(T + 5) < dimY/RanT for S of sufficiently small norm. It follows that
for such operators S we also have dim Ker(T'+ 5) < dimKer 7.

We now reach the key perturbation theorem: compact perturbations of Fredholm
operators are Fredholm with the same index.

Theorem 12.8. Let X and Y be Banach spaces and suppose that T, S € B(X,Y)
with T' Fredholm and S compact. Then T + S is Fredholm and ind(T + S) =ind T

ProOOF. By Theorem there exists a closed finite-codimensional subspace V' of
X such that T'|y is an isomorphic embedding. Since S is compact and restricts to an
isomorphic embedding on V NKer(7'+ 5) this space must be finite-dimensional, and
hence dimKer(7T + 5) < co. Note that S* is compact by Schauder’s Theorem and
T* is Fredholm by Proposition [[2:4] so the above argument shows that Ker(7™ -+ 5*)
is also finite-dimensional. We aim to show that Ran(7T" + S) is closed, so that it will
be equal to Ker(T* + S*)s.

To this end, let r > 0 be such that ||Tz|| > r||z| for all x € V, and let € = r/2.
By Theorem we may find a closed finite-codimensional subspace W of X such
that ||S|w| < e. Then V N W is closed and of finite codimension in X, and for
z € VNW we have |[(T + S)z| > ¢||z||. Thus (T'+ S)(V N W) is a Banach
space which has finite codimension in Ran(7"+ ). Since closed finite-codimensional
subspaces are complemented it follows that Ran(7 + S) is complete and therefore
closed. Thus Ran(7T + S) = Ker(T™* + S*),, so Ran(T + S) has finite codimension
in Y and hence T 4 S is Fredholm.

For 0 <t <1let Qy =T +tS. Then each @, is Fredholm and Theorem
implies that the function v : [0, 1] — Z given by 9 (t) = ind Q; is continuous. By the
Intermediate Value Theorem v must be constant, and in particular ind(7 + S) =
(1) = (0) = ind T, as required. O]
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Corollary 12.9 (Fredholm Alternative). Let X be a Banach space and suppose
that T € K(X) and that A € F\ {0}. Then A\ — T is injective if and only if it is
surjective, and

Ran(A —T') = Ker(A — T%)..

Furthermore, dim Ker(A — T%) = dim Ker(A — T') and both numbers are finite.

PROOF. For \ # 0 the operator A\I is Fredholm with index zero, so by Theorem [12.§]
the operator A — T is also Fredholm and ind(A — 7') = 0. In particular, A — T has
closed range, and it is injective if and only if it is surjective. This proves the first
two claims. By Corollary we have

dim(X/Ran(A —T))* = dimRan(A — T)° = dim Ker(A — T™),
and hence dim Ker(A —7%) = dim X/ Ran(A — T') = dim Ker(A — 7). O

Note that this theorem can be applied, for example, to the compact integral
operators we gave in Example [[1.1]
Recall that if X is a complex Banach space and T' € B(X), then the spectrum

o(T)={\ € C: X —T is not an isomorphism }

of T'is a non-empty compact subset and the spectral radius r(T') = Supyeq(r) |\l
satisfies 7(T') = limy, oo | T™||*/™. Let 0,(T) denote the point spectrum of T, that is
to say the set of eigenvalues of T'. If X is finite-dimensional then o(T") = 0, (T"), but in
general this is not true. However, for compact operators we at least have o(7)\{0} C
op(T'), as we now show (see Remark [[2Z.TT] for an alternative subsequence proof).

Theorem 12.10. Let X be a complex Banach space and suppose that T € K(X).
Then o(T) is at most countably infinite and o(T') \ {0} consists of isolated points
which are eigenvalues with finite-dimensional eigenspaces. In particular, if o(T) is
infinite then its unique limit point is zero. Furthermore, 0 € o(T) whenever X is
infinite-dimensional.

ProoF. For A € C\ {0} it follows from Corollary and the Inverse Mapping
Theorem that A € o(T) if and only if A is an eigenvalue of T' with finite-dimensional
eigenspace.

Fix A € C\ {0}, and let ¥;, = Ran(A—T)", n > 0, and Y = (-, Y,. Note that
Y41 € Y, and that Y,, has finite codimension in X for all n > 0. Thus each Y,
n > 0, is closed and hence so is Y. We now show that A — T maps Y onto itself.
It is straightforward to see that (A —T")(Y) C Y. To prove the reverse inclusion let
y € Y. For each n > 0 there exists z,, € Y, such that (A — Tz, = y. Moreover,
since Ker(A—1T) is finite-dimensional there exists £ > 0 such that Ker(A-T)NY,, =
Ker(A —T)NYj, for all n > k. Thus

2 —xn €E KerAN—T)NY, CY,, n>k,

which implies that z; € Y and hence Y C (A—=T)(Y), as required. Therefore T also
maps Y into Y, and so T'|y € K(Y'). Then Corollary [[2.9/shows that Ker(A—T)|y =
{0} and so (A — T')|y is an isomorphism.
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Since the isomorphisms of Y are open in B(Y'), there exists ¢ > 0 such that for
IA—u| < e (T — p)|y (which does map Y into Y') is an isomorphism. For p # A,
any x € ker(T — p) lies in Y, as we can write

r=A=—p) "AN=1)"v €Y,.

Therefore if | — A <€, and p # A, u # 0, then ker(T' — ) = {0} and so u ¢ o(T).
It follows that o(T') \ {0} consists of isolated points.

Let 0,(T) = {\ € o(T) : |\| > n~1}, n > 1, and recall that any infinite compact
set contains a limit point. Thus 0, (T) is either empty or finite for each n > 1 and
o(T)\ {0} =U,;>1 on(T) is at most countably infinite. Moreover, if o(7T’) is infinite
then since the points in o(T) \ {0} are isolated zero must be the unique limit point
of o(T'). Note finally that if 7" is surjective then by the Open Mapping Theorem
there exists r > 0 such that B (r) C T(B%) and hence by compactness of T' the
unit ball By is compact, so X must be finite-dimensional. Thus 0 € o(7T") whenever
X is infinite-dimensional. O

Remark 12.11. We can obtain these results using subsequence arguments First,
suppose A # 0 is not an eigenvalue of 7" then there exists » > 0 such that ||(T —
ANz|| > r||z|| for all 2 € X B Then Ran(T — \) is complete, so closed, and hence
T —X: X — Ran(T — )) is an isomorphism by the open mapping theorem. If this
map is not surjective then X; = Ran(T — \) is a proper closed subspace of X, and
in general X,,11 = (T — \)(X,,) is a proper closed subspace of X,,. Then by Reisz’s
lemma, choose a sequence of unit vectors (z,,)0 ; in X, such that d(zp, X, 4+1) > 1/2.
Note that for n > m,

| Txm — Tan|| = [|A2m + (T — Azp) — (T — Ny + Azp|| > AN d(@m, Ximt1) > |A]/2

as (T —AN)xm, Tn, (T —N)zp € Xpmt1. Therefore (T'x,,)5 ; does not have a convergent
subsequence. Accordingly T'— A is not surjective, so A ¢ o(T).

A very similar subsequence argument then shows that the subspace of £ spanned
by all eigenvectors of T' corresponding to eigenvalues in {\ € C : |\| > r} is finite-
dimensional for each r > O This shows that the non-zero eigenvalues have finite
dimensional eigenspaces, and that all non-zero eigenvalues are isolated.

48which I personally find a bit easier, as it’s more reminiscent of the Hilbert space case, which
some of you may have seen before. A key trick is the use of Riesz’s lemma to construct sequences of
vectors which remain seperated under T (in place of the orthogonal bases we would use for Hilbert
spaces). Note though that while this subsequence approach can be used to give us the Fredholm
alternative, and the spectral theorem, it’s not so easy to recapture the Fredholm perturbation
theorem this way (and this is a powerful tool beyond its applications to the spectral theorem).

49Tf not, then find a sequence (x,,)5%; of unit vectors in X with (T — )z, — 0. Passing to a
subsequence, we can assume Tz, — y, S0 T, — y/\. Since each x,, is a unit vector, y # 0, so y is
an eigenvector with eigenvalue A, giving the required contradiction.

50Tf the space E was infinite dimensional, fix an infinite LI sequence (z,)32; of eigenvectors in
E with corresponding eigenvalues (\,) and write E, = Span(z1,...,%,) so that T(F,) = E, for
all n. Choose a sequence of unit vectors (yn)ne1 with y, € E, and d(yn, En—1) > 1/2. (by Riesz’s
lemma, though we’re only using it in finite dimensions). Note that (' — Anyn) € En—1 as yn is of
the form z + ax, for some z € E,_1 and a € F. For n > m,

1Ty = Tyl = Patin + (T = M)y = Tyinll = Py, Bumr) > /2.

Therefore (T'yn)n=1 does not have a convergent subsequence, contradicting compactness of T'.
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Let X be a complex Hilbert space with inner product (-,-), and let T' € B(X).
Recall that the adjoint operator T* € B(X) of T is defined by the identity (T'z,y) =
(x,T*y), x,y € X ] By the Riesz Representation Theorem there exists a conjugate-
linear isometric surjection ®x : X — X* such that (®xy)(z) = (z,y) for all z,y €
X. The adjoint of T is related to the dual of T through the relation 7% o &x =
®x o T™*. Indeed, for z,y € X we have

(T*(®xx))(y) = (2x2)(Ty) = (Ty,z) = (v, T"x) = (Px (T"x))(y).

Thus the following diagram commutes:

ax]ext ox]|oxt

x ", x

and in practise we typically identify the dual operator T with the adjoint T*.

Recall that an operator T is said to be self-adjoint if T* =T. We say that a set
{zo : @ € A} is an orthonormal basis for X if ||zo|| =1 for all a € A, (zq,25) =0
whenever «, 5 € A are distinct and span{z, : a € A} is dense in X.

Theorem 12.12 (Spectral Theorem). Let X be an infinite-dimensional complex
Hilbert space and suppose that T € K(X) is self-adjoint. Then X admits an or-
thonormal basis consisting of eigenvectors of T. Moreover there exist a sequence
(An)2; of non-zero real numbers, where N € NU{oc}, such that A, — 0 as n — 0o
when the sequence is infinite, and furthermore there exists a sequence of orthogonal
finite-rank projections (Py)N_, such that P,,P, = 0 for m # n and

where the series converges in the norm of B(X) when N = oc.

PRrROOF. Recall that o(7) C R when T is self-adjoint, and that eigenvectors corre-
sponding to distinct eigenvalues are orthogonal. Hence existence of the sequences
(\n) and (P,) follows from Theorem [[2.I01 If N = oo, the series Zgil AP is
Cauchy and hence convergent in B(X). Let S = Zgzl MP,. Then Sx = Tx for
any « € X which is a linear combination of eigenvectors of 7. Hence the result
will follow once we have shown that X admits an orthonormal basis consisting of
such eigenvectors. Let Y be the closed linear span of all eigenvectors of T'. If we
let B, be an orthonormal basis for Ker(\, — T') and if we use Zorn’s Lemma to
obtain an orthonormal basis By for Ker T, then the set ngo B,, is an orthonormal
basis for Y consisting of eigenvectors of T. Let Z = Y. Since Y is T-invariant
and T is self-adjoint the space Z is also T-invariant, and moreover T'|; is a compact
self-adjoint operator on Z. Theorem [[2.10] implies that o(7"|z) = {0}, because any
eigenvalue of T'|z would also be an eigenvalue of T'. By self-adjointness we deduce
that |T|z|| =7(T|z) =0,s0 Z CKer T CY = Z+. Hence Z = {0},s0 X =Y. O

5INote the cunning bit of typesetting which avoids abusing notation. The star on the operator
T on B(X) has 5-points as opposed to the dual operator T where the star has 6-points! Of course

we should think of these operators as being the same after we identify X with X* using the Riesz
Representation Theorem, so you don’t need to spend time counting the points on the stars.
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Remark 12.13. The Spectral Theorem can be extended to the case of compact
normal operators, that is to say compact operators T' such that T*T = TT*

13 Schauder bases

Given a Banach space X, a set {x, : n > 1} in X is said to be a Schauder basis for
X if every ¢ € X admits a unique representation as a norm-convergent series

= Ay (13.1)
n=1

with A\, € F, n > 1. Note that a Schauder basis necessarily forms a linearly in-
dependent set and that any Banach space which admits a Schauder basis must be
separable. As usual in the context of bases, a Schauder basis is strictly speaking an
ordered set, and a permutation of a Schauder basis need not be a Schauder basis. If
{zy, : n > 1} is a Schauder basis for X we may consider the linear maps P,: X — X,
n > 1, given by

n
Pn.l‘ = Z )\kl'k
k=1

when z € X has the representation in (I3.1). Then P? = P, for all n > 1 and
| Pz —x|| = 0 as n — oo for all x € X. We may also consider the linear functionals
fn € X',n>1,givenby f,(z) = A\, when z € X is as in (I3]). The maps P,,, n > 1,
are called the basis projections associated with the Schauder basis {z,, : n > 1}
and the functionals f,, n > 1, are the associated basis functionals, sometimes also
referred to as coordinate functionals.

Theorem 13.1. Let X be a Banach space and suppose that {z, : n > 1} is a
Schauder basis for X. Then the basis projections P,, n > 1, and the basis functionals
fn, n>1, are all bounded, and in fact there exists M > 1 such that | P, || < M and
| full < 2M ||z ||7" for all n > 1.

PROOF. Let the map ||| - |||: X — R4 be defined by
Izl = sup{[| Paz|| : n > 1}, 2z € X.

We will see on Problem Sheet 4 that ||| - ||| is a complete norm on X. Note also that
since z = lim,,_,o Ppx for all z € X we have that

lell = lim [P < [lel, @€ X.

52There’s a more general spectral theorem for all normal (not necessarily compact) operators -
leading us in the direction of spectral theory. These need not have eigenvalues but we can suitably
decompose such an operator in the form fQ Adu(N), where p is a projection-valued measure on {2, i.e.
a measure taking values in the orthogonal projections in B(X). Of course, we need to think about
in what sense such an integral converges. In the case of compact normal operators, the measure
space is countable, and the integral becomes the sum . \; E;u, where E; is the projection onto the
eigenspace corresponding to A; (and in the self adjoint case we end up with exactly the situation of

Theorem [[2:12)).
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Thus the identity map from (X, ||| - |||) to (X, ]| - ||) is a continuous bijection, and it
follows from the Inverse Mapping Theorem that ||| - ||| is equivalent to || - ||, so there
exists M > 1 such that |||z||| < M|z|| for all x € X. Note finally that

[Poz]| < [l < M|z, zeX, n>1,

and hence ||P,|| < M for all n > 1. Since fy(z)z, = (P, — Pp—1)x for all z € X and
n > 1 (with Py taken to be the zero operator), the final claim follows at once. [

By Remark [IT.4land a result on Problem Sheet 4 there exists a separable Banach
space which does not admit a Schauder basis. However, most classical Banach spaces
which are separable do admit a Schauder basis.

Example 13.2. (a) If X is a separable Hilbert space then any orthonormal basis
for X is a Schauder basis for X.

(b) If X =¢P for 1 <p < o0 or X = ¢y, then the set {e, : n > 1} is a Schauder basis
for X. The basis functionals are given by f,(x) =z, forz € X, n > 1. If X = c we
may add eg = (1,1,1,...) to the above basis to get a Schauder basis {e, : n > 0}
for X. The basis functional fy corresponding to eg is fo(z) = lim, 00 Tpn, = € X.
(c) Let X = LP(0,1), where 1 < p < oo. Given n > 1 we may uniquely express n in
the form n = 2F + j with £ > 0 and 0 < j < 2 — 1, and then we may take x, to
be the function satisfying z,(t) = 1 for j27% <t < (25 + 1)27%" ! and z,(¢t) = —1
for (25 +1)27%=1 <t < (j + 1)27%. Together with the constant function z(t) = 1,
0 < t < 1, we obtain a Schauder basis {x,, : n > 0} for X. This is the Haar basis.
(d) Let X = C(]0,1]) and, for n > 0, let x,, be as in (e). Now define y, € X by
Yo = xg and

t
yn(t) = 2”1/ Tp—1(s)ds, 0<t<1, n>1
0

Then {y, : » > 0} is a Schauder basis for X. It is known as Schauder’s basis.

14 Subspaces of classical sequence spaces

The material covered in this section is not examinable. Given a Banach space X, a
subset S = {y, : n > 1} of X is said to be basic if it is a Schauder basis for its closed
linear span Y = span S. In this case there exist, by Theorem [[3.1] basis projections
P, € B(Y) and associated basis functionals f,, € Y*, n > 1. We also know that
sup{||Pn|| : n > 1} < oo, and we call the quantity M = sup{||P,|| : n > 1} the basis
constant of S. Then ||f,|| < 2M||y,||~!, n > 1. Note that the basis constant M of
any basic set necessarily satisfies M > 1.

Theorem 14.1. Let X be a Banach space and suppose that {y, :n > 1} C Sx is a
basic set with basis constant M. Suppose furthermore that z, € X, n > 1, are such
that

o0
I — 2ol < .
d 2M
2

Then Y = span{y, : n > 1} is isomorphic to Z = span{z, : n > 1}, and moreover
Y is complemented in X if and only if Z is.
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PROOF. Let g, € X* be Hahn-Banach extensions of the basis functionals f,, € Y*,
so that [|gn|| = [|fnll <2M, n > 1, and let

Sz = Zgn(x)(yn —zn), x€X.
n=1

Then by our assumption S is a well-defined element of B(X) with ||S]| < 1. Hence
the operator T'=1 — S € B(X) is an isomorphism which satisfies Ty, = z,, n > 1,
and it follows that T(Y) = Z. Suppose that P € B(X) satisfies P2 = P. If
Ran P = Y then we consider Q = TPT~! € B(X) which satisfies Q* = Q and
Ran @ = Z, and if Ran P = Z then we consider Q = T~'PT € B(X) which satisfies
Q? =@ and Ran@Q = Z. Hence Y is complemented if and only if Z is. O

Proposition 14.2. Let X = /P for 1 <p < oo or X = ¢p.

(a) If S = {yn : n > 1} C Sx is disjointly supported, then S is a basic set with
basis constant M = 1 and furthermore the space Y =3span .S is isomorphic to
X and complemented in X.

(b) If Z is an infinite-dimensional subspace of X then there exists a disjointly
supported set {y, : n > 1} C Sx and vectors z, € Z, n > 1, such that

oo

1
Z lyn — znll < 9
n=1

PROOF. The proof of part (a) is straightforward, and the proof of part (b) uses the
prototype of a ‘gliding hump’ argument. O

Theorem 14.3. Let X = P for 1 < p < o0 or X = ¢y, and suppose that Z
1s a closed infinite-dimensional subspace of X. Then Z contains a complemented
subspace which is isomorphic to X.

PRroor. This follows from Theorem [IZ4.1] and Proposition O

Corollary 14.4. (a) Let X = (' or X = ¢y. Then every infinite-dimensional
subspace of X is non-reflexive.

(b) Ewvery closed infinite-dimensional subspace of £* has non-separable dual.
We end with a striking result about subspaces of classical sequence spaces.

Theorem 14.5 (Pelczynski). Let X = (P for 1 < p < oo or X = ¢y. Then every
infinite-dimensional complemented subspace of X is isomorphic to X.

PROOF. By considering a partition of N into countably many infinite subsets we see

that -
X~ (@X) :
n=1 p

where if X = ¢y we let p = oo and consider X-valued sequences which converge to
zero. If Z is an infinite-dimensional complemented subspace of X then X =Y ¢ Z
topologically for some closed subspace Y of X and by Theorem [[4.3] we have Z =
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Zy @ Zy topologically, where Z1 ~ X. Thus X = Zp @ Z1 @Y = Z1 Y @ Zp, all
direct sums being topological, and hence

D o
Z:ZO@ZI:ZO@X:ZO@(@ZI@Y@ZO> ~ (@ZO@Zl@Y> ~ X,
p p

n=1 n=1

as required. O

48



	Introduction
	Normed vector spaces
	Direct sums and complemented subspaces
	Quotient spaces and quotient operators
	The Hahn-Banach Theorems
	Biduals and reflexivity
	Convexity and smoothness of norms
	Lebesgue spaces
	The weak and weak* topologies
	Compactness in normed vector spaces
	Compact operators
	Fredholm theory
	Schauder bases
	Subspaces of classical sequence spaces

