C4.1 Further Functional Analysis – Problem Sheet 1

For classes in Week 2/3 of MT

- 1. (a) Let X, Y and Z be vector spaces and suppose that $T: X \to Y$ and $S: X \to Z$ are linear maps. Show that there exists a linear map $\pi: Z \to Y$ such that $T = \pi \circ S$ if and only if Ker $S \subseteq \text{Ker } T$.
 - (b) Hence or otherwise show that if $n \in \mathbb{N}$ and if f_1, \ldots, f_n and f are linear functionals on a vector space X, then $f \in \text{span}\{f_1, \ldots, f_n\}$ if and only if

$$\bigcap_{k=1}^{n} \operatorname{Ker} f_{k} \subseteq \operatorname{Ker} f.$$

What can you deduce about double annihilators of finite-dimensional subspaces of X^* when X is a normed vector space?¹

2. Let X be an infinite-dimensional normed space, and suppose that $\{x_{\alpha} : \alpha \in A\}$ is a Hamel basis for X and that $||x_{\alpha}|| = 1$ for all $\alpha \in A$. Given a vector $x \in X$ which has the expansion $x = \sum_{\alpha \in A} \lambda_{\alpha} x_{\alpha}$ we let

$$|||x||| = \sum_{\alpha \in A} |\lambda_{\alpha}|.$$

- (a) Check that $\| \cdot \|$ defines a norm on X.
- (b) Now let X be a Banach space. Show that $(X, \| \cdot \|)$ is not separable.
- (c) Deduce that in the Closed Graph Theorem the assumption that the codomain be complete cannot be omitted.
- 3. Let X be a vector space on which two norms $\|\cdot\|, \|\cdot\|$ are defined, and suppose that $\|x\| \le C \|\|x\|\|$ for some constant C > 0 and all $x \in X$.
 - (a) Show that if X is complete with respect to one of the two norms then it is complete with respect to the other if and only if the two norms are equivalent.
 - (b) Give an example in which $(X, || \cdot ||)$ is complete but $(X, || \cdot ||)$ is not.
 - (c) Give an example in which $(X, \|\cdot\|)$ is complete but $(X, \|\cdot\|)$ is not.
- 4. Let X be an infinite-dimensional Banach space with norm $\|\cdot\|$, and let $f: X \to \mathbb{F}$ be an unbounded linear functional. Given a vector $x_0 \in X$ such that $f(x_0) = 1$, consider the linear operator $T: X \to X$ defined by

$$Tx = x - 2f(x)x_0, \quad x \in X.$$

Show that $T^2 = I$. Hence show that the map $||| \cdot ||| \colon X \to [0, \infty)$ given, for $x \in X$, by |||x||| = ||Tx|| defines a complete norm on X which is not equivalent to $|| \cdot ||$.

5. Let X be a vector space and suppose that Y is a subspace of X.

 $^{^{1}}$ We won't have covered annihilators yet, but you won't need much more than the definitions (found just before Corollary 5.8) for this question.

- (a) Construct a linear map $P: X \to X$ such that $P^2 = P$ and $\operatorname{Ran} P = Y$.
- (b) Deduce that Y is algebraically complemented in X, which is to say that there exists a further subspace Z of X such that every $x \in X$ can be expressed uniquely as x = y + z with $y \in Y$ and $z \in Z$.
- (c) Is the subspace Z in part (b) uniquely determined by Y?
- 6. Let X be a normed vector space and let Y be a subspace of X.
 - (a) Suppose that Y is finite-dimensional. Show that Y is complemented in X, and that if Z is any closed subspace of X such that $X = Y \oplus Z$ algebraically, then X is in fact the topological direct sum of Y and Z.
 - (b) What can you say if Y has finite codimension in X? [Recall that the codimension of Y in X is the dimension of the quotient vector space X/Y.]
- 7. Let $Y, Z \subseteq \ell^2$ be given by

$$Y = \{ (y_n) \in \ell^2 : y_{2n} = 0 \text{ for all } n \ge 1 \},\$$

$$Z = \{ (z_n) \in \ell^2 : z_{2n-1} = n z_{2n} \text{ for all } n \ge 1 \}.$$

- (a) Show that Y and Z are closed subspaces of ℓ^2 and that $Y \cap Z = \{0\}$.
- (b) Letting $X = Y \oplus Z$ denote the algebraic direct sum of Y and Z, prove that X is dense in ℓ^2 but that $X \neq \ell^2$, and deduce that X is not the topological direct sum of Y and Z.
- (c) Let $P: X \to X$ be the linear map given by P(y+z) = y for all $y \in Y, z \in Z$. Show directly that P is unbounded.
- 8. Let X be a normed vector space and let Y and Z be subspaces of X such that $X = Y \oplus Z$ algebraically. Show that if Y is closed, then X is the topological direct sum of Y and Z if and only if the restriction $\pi|_Z \colon Z \to X/Y$ of the canonical quotient map $\pi \colon X \to X/Y$ is an isomorphism.
- 9. Let Y and Z be closed subspaces of a Banach space X with $Y \cap Z = \{0\}$. Equip the algebraic direct sum $Y \oplus Z$ with the ℓ^1 -norm: |||y + z||| = ||y|| + ||z||.
 - (a) Show that $\|\|\cdot\|\|$ is complete on $Y \oplus Z$.
 - (b) Show that the following are equivalent:
 - i. $\|\cdot\|$ is equivalent to the original norm on $Y \oplus Z$ (as a subspace of X);
 - ii. $Y \oplus Z$ is closed in X;
 - iii. Y is complemented by Z in Y + Z (so $Y \oplus Z$ is a topological direct sum).²

SAW MT19

²Insertion 'by Z' added 22 Oct 19; thanks to the student who pointed this out. As an extra exercise, why does this matter? Can Y be complemented by something other than Z?