
C4.1 Further Functional Analysis – Problem Sheet 4

For classes in Week 1 of HT.

1. (a) Let X and Y be normed vector spaces and suppose that Tn ∈ B(X, Y ), n ≥ 1,
satisfy supn≥1 ‖Tn‖ <∞. Let M be a totally bounded subset of X such that

lim
n→∞

‖Tnx‖ = 0, x ∈M.

Prove that the convergence is uniform over x ∈M .

(b) Let X be a Banach space and suppose that there exist finite-rank operators
Pn ∈ B(X), n ≥ 1, such that

lim
n→∞

‖Pnx− x‖ = 0, x ∈ X.

(i) Show that a subset M of X is totally bounded if and only if it is bounded
and ‖Pnx− x‖ → 0 as n→∞ uniformly over x ∈M .

(ii) Prove that a bounded linear operator on X is compact if and only if it is
the norm limit of a sequence of finite-rank operators.

Note that (b)(ii) shows that if X is a Banach space with a Schauder basis, then
compact operators on X are precisely the norm limits of finite-rank operators.
In particular, this holds when X is a separable Hilbert space.1

2. Let K ∈ L2(R2) and consider the map T sending x ∈ L2(R) to the function Tx
defined by

(Tx)(t) =

∫
R
K(s, t)x(s) ds

whenever t ∈ R is such that the integral exists.

(a) Show that T is a well-defined element of B(L2(R)) with ‖T‖ ≤ ‖K‖L2(R2).

(b) Prove that T is compact. [You may use the fact that indicator functions of
bounded rectangles span a dense subspace of L2(R2).]

3. Let X and Y be normed vector spaces and let T ∈ K(X, Y ). Furthermore, let Ω
denote the closure of T (BX) and let M = {f |Ω : f ∈ BY ∗}.
(a) Prove that M is a relatively compact subset of C(Ω).

(b) Show that M and T ∗(BY ∗) are isometric.

(c) Deduce Schauder’s Theorem.

4. (a) Let X and Y be normed vector spaces and let T ∈ B(X, Y ). We say that T is
completely continuous if, for every weakly convergent sequence (xn) in X, the
sequence (Txn) is norm-convergent in Y .

(i) Show that if T is compact then T is completely continuous.

(ii) Prove that the converse of (i) holds if X is reflexive. [You may, if you
wish, assume in addition that X is separable.]

1Additional exercise. Show that regardless of separability, every compact operator on a Hilbert
space is a limit of finite rank operators.
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(iii) Exhibit an operator which is completely continuous but not compact.

(b) Let 1 < p <∞. Show that B(`p, `1) = K(`p, `1). Is B(c0, `
p) = K(c0, `

p)?

5. Let X and Y be normed vector spaces and let T ∈ B(X, Y ). We say that T is
weakly compact if the weak closure of T (BX) is weakly compact.

(a) Show that T is weakly compact if and only if RanT ∗∗ ⊆ JY (Y ).

(b) Prove that if T is weakly compact then T ∗ is weakly compact, and that if Y
is complete then the converse holds too.

6. LetX, Y be Banach spaces and suppose that T ∈ B(X, Y ). Show that T is Fredholm
if and only if T ∗ is and that, if both operators are Fredholm, then indT+indT ∗ = 0.

7. Let X, Y and Z be Banach spaces and let S ∈ B(Y, Z) and T ∈ B(X, Y ).

(a) Show that if S, T are both Fredholm then so is ST and indST = indS+indT.

(b) Suppose now that ST is Fredholm. Prove that S is Fredholm if and only if T
is Fredholm. Give an example in which neither S nor T is Fredholm.

(c) Show that if X = Y = Z and ST = TS then ST is Fredholm if and only if S
and T are both Fredholm.

8. LetX be the complex Banach space `1 and consider the left-shift operator T ∈ B(X)
given by Tx = (xn+1)n≥1 for x = (xn)n≥1 ∈ X. Moreover let Γ = {λ ∈ C : |λ| = 1}.
(a) Show that for λ ∈ C the operator T − λ is Fredholm if and only if λ 6∈ Γ, and

determine the index ind(T − λ) whenever it is defined.

(b) Let p be a complex polynomial. Prove that p(T ) is Fredholm if and only if
p−1({0}) ∩ Γ = ∅ and that, if this condition is satisfied, then

ind p(T ) =
1

2πi

∮
Γ

p′(λ)

p(λ)
dλ.

9. Let X be a Banach space and let {xn : n ≥ 1} be a Schauder basis for X with basis
projections Pn, n ≥ 1, and let

9x9 = sup{‖Pnx‖ : n ≥ 1}, x ∈ X.

Prove that 9 · 9 defines a complete norm on X.

10. (a) Let X be a Banach space and suppose that {xn : n ≥ 1} ⊆ X \ {0} spans a
dense subspace of X. Prove that {xn : n ≥ 1} is a Schauder basis for X if and
only if there exists a constant M > 0 such that∥∥∥∥ m∑

k=1

λkxk

∥∥∥∥ ≤M

∥∥∥∥ n∑
k=1

λkxk

∥∥∥∥
for all n ≥ m ≥ 1 and λ1, . . . , λn ∈ F.

(b) Let xn = (1, 1, . . . , 1, 0, 0 . . . ), n ≥ 1, where the last 1 appears in the n-th entry.
Prove that {xn : n ≥ 1} is a Schauder basis for c0.
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(c) Let X be a Banach space which admits a Schauder basis {xn : n ≥ 1} with
associated basis functionals fn ∈ X∗, n ≥ 1.

(i) Show that the set {fn : n ≥ 1} is basic, which is to say that it forms a
Schauder basis for its closed linear span.

(ii) Assuming that X∗ admits a Schauder basis, is {fn : n ≥ 1} necessarily a
Schauder basis for X∗?

This ends the core problem sheet. Some extensional problems are below, but these
are not for handing in, and are unlikely to be discussed in class. If there’s sufficient
demand, I’ll be happy to arrange to discuss them.

11. Let X be a Banach space with a Schauder basis {xn : n ≥ 1} with associated
basis projections Pn and basis functionals fn ∈ X∗, n ≥ 1.

(a) Somewhat giving away the answer to the last part of the previous question,
show that for each n ∈ N,

‖f |Span{xi:i>n} ≤ ‖f − P
∗
nf‖ ≤ (1 +K)‖f |Span{xi:i>n},

where K is the basis constant. Deduce that Span{fn : n ∈ N} = X∗ if and
only if for every f ∈ X∗,

‖f |Span{ei:i>n}‖ → 0,

as n → ∞. [In this case we say that {xn : n ≥ 1} is a shrinking Schauder
basis.].

(b) Let f ∈ X∗. Observe that P ∗nf → f weak∗, and use this to deduce that if
X is reflexive, then {xn : n ≥ 1} is shrinking.

(c) Suppose that {xi : i ∈ N} is shrinking. Let Y be the space of all sequences
(an)∞n=1 equipped with ‖(an)‖ = supn ‖

∑n
i=1 aixi‖. Verify that this is a

norm on Y , and that T : X∗∗ → Y given by (Tφ) = (φ(fn)∞n=1) is an
isomorphism. Show too that if the basis constant is 1, then T is isometric.
[For context, think about what is going on with the canonical basis of c0.].

(d) Deduce that X is a reflexive space if and only if {xi : i ∈ N is shrink-
ing and for all sequence of scalars (an)∞n=1,

∑∞
i=1 aixi converges whenever

supn ‖
∑n

i=1 aixi‖ <∞.

12. The James space is the space X consisting of all sequences of real numbers
(an)∞n=1 such that an → 0 and

‖(an)‖ = sup
k≥2

sup
n1<n2<···<nk

( k−1∑
i=1

(ani
− ani+1

)2
)1/2

<∞.

(a) Show that X is a Banach space, and that the elements en (which have a 1
in the n-th position and zeros elsewhere) form a Schauder basis for X with
basis constant 1.
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(b) Suppose, with the aim of reaching a contradiction, that {en : n ∈ N} is not
shrinking in the sense of the previous question. Use 11(a), to find f ∈ X∗
with ‖f‖ = 1, ε > 0, a real sequence (an)∞n=1 and p1 < q1 < p2 < q2 < . . .
such that the elements xn =

∑qn
i=pn

aiei ∈ X have ‖xn‖ = 1 and f(xn) > ε
for all n. By considering

bn =

{
an/n, pn ≤ n ≤ qn

0, otherwise
,

or otherwise reach a contradiction, and deduce that {en : n ∈ N} is shrink-
ing.

(c) Given a real sequence (an) such that supn ‖
∑n

i=1 aiei‖ < ∞, show that
limn→∞ an exists. Use question 11 to deduce that JX(X) is has co-dimension
1 in X∗∗.

(d) Show that X is isomorphic to X∗∗.

(e) In Q10(c)(ii), your example probably had the property the dual space was
not separable. Can you now give an example with a separable dual space?

13. (a) We first deal with rearrangements of series in Banach spaces. Say that a
series

∑∞
n=1 xn in a normed space X unconditionally converges to x ∈ X, if

for every ε > 0, there exists a finite set F ⊂ N such that for any finite set
G ⊂ N with G ⊃ F , we have ‖

∑
n∈G xn − x‖ < ε.

i. Let X be a normed space. Show that
∑∞

n=1 xn unconditionally con-
verges to x ∈ X if and only if given any permutation θ of N, we have∑∞

n=1 xθ(n) = x.

ii. Say that a series
∑∞

n=1 xn is unconditionally Cauchy if, for every ε > 0,
there exists a finite set F ⊂ N, such that for any finite subset F ′ ⊂ N
with F ∩ F ′ = ∅, ‖

∑
n∈F ′ xn‖ < ε. Show that in a Banach space a

series is unconditionally convergent if and only if it is unconditionally
Cauchy.

iii. Give an example of a unconditionally convergent series in a Banach
space which is not absolutely convergent.

iv. Let X be a real Banach space. Show that
∑∞

n=1 xn is unconditionally
convergent if and only if for all sequences (εn)∞n=1 from {−1,+1}, the
series

∑∞
n=1 εnxn converges.

(b) We now return to bases. Let X be a real Banach space. Say that a Schauder
basis {xn : n ∈ N} is unconditional if for every x ∈ X, the expression
x =

∑∞
n=1 anxn is unconditionally convergent. We say that a sequence

(xn)∞n=1 in X is an unconditional basic sequence if {xn : n ∈ N} is an
unconditional Schauder basis for Span{xn : n ∈ N}.

i. Let {xn : n ∈ N} be an unconditional Schauder basis for X. Show that
there is a constant K > 0 such that whenever (an)∞n=1 is a sequence of
scalars such that

∑∞
n=1 anxn converges, then

‖
∞∑
n=1

λnanxn‖ ≤ K sup
n
|λn|‖

∞∑
n=1

anxn‖
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for all (λn)∞n=1 ∈ `∞.
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