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1 Introduction

Lect 1
Functional analysis is the study of normed (or, more generally, of topological) vec-
tor spaces and the continuous linear maps between them. This course builds on
what is covered in introductory courses on functional analysis, such as B4 Func-
tional Analysis I and II taken by third-year students at Oxford, and in particular
we will extend the theory of normed vector spaces and bounded linear operators
developed there. Some functional analysts are primarily interested in what might
be called geometric properties of Banach spaces, others in properties of operators
acting on these spaces. In fact, the two strands are connected and we will deal with
elements of both. Functional analysis makes connections right across mathemat-
ics; there are many applications, for instance to differential equations, probability,
mathematical physics, numerical analysis, as well as strong connections to topics in
pure mathematics: the Feldholm index we begin in Section 12 provides the analytic
side of the celebrated Atiyah-Singer index theorem, various approximation proper-
ties in geometric group theory are studied using tools from functional analysis, and
there are strong links between Banach spaces and subjects like metric geometry and
descriptive set theory.

Our emphasis here will nevertheless be mainly on the abstract theory, both
to avoid excessive overlap with other courses and to keep the prerequisites to a
minimum. We will illustrate the abstract theory by considering various specific
examples, both in the lectures and especially in the problem sheets.

There are many good books on functional analysis. Among those particularly
relevant to this course are the following:

[1] B. Bollobas, Linear Analysis: An Introductory Course, CUP, 1999.

[2] H. Brezis, Functional Analysis, Sobolev Spaces and PDEs, Springer, 2011.

[3] N.L. Carothers, A Short Course on Banach Space Theory, CUP, 2004.
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[4] J. Conway, A Course in Functional Analysis, Springer, 2007.

[5] M. Fabian et al., Funct. Analysis and Infinite-Dim. Geometry, Springer, 2001.

[6] R.E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.

[7] W. Rudin, Functional Analysis, McGraw-Hill, 1991.

[8] A.E. Taylor and D.C. Lay, Introduction to Functional Analysis, Wiley, 1980.

Perhaps the most useful of these is [5]. If your college library doesn’t already own a
copy, you might consider asking it to buy one.

Prerequisites

• Basics of metric spaces, particularly aspects relating to completeness.

• Basics of topological spaces, closures and interiors, and in particular compact-
ness.1

• Fundamentals of linear algebra, bases, quotient spaces.

• Normed spaces and Banach spaces. Definitions and fundamental examples.
Familiarity with Hilbert spaces, and their fundamental properties.2

• Operators between normed spaces, Continuity and boundedness, Completeness
of B(X,Y ) when Y is complete.

• The Baire category theorem.3

• Open mapping theorem, closed graph theorem, and inverse mapping theorem.4

• Measure theory. We use this in Section 8 and a couple of associated examples
(and an example on the last example sheet). You’ll want enough background
for this section, but it’s otherwise not essential.

There is a preliminary reading document on the course homepage, prepared by
Richard Haydon5 which contains more details on this background material, including
many complete proofs.

1We will use Tychonoff’s theorem that the product of compact spaces is compact as a black box
in the course. This is equivalent to the axiom of choice, and not in my list of basic facts about
topological spaces.

2Most of this course will focus on the structure of Banach spaces and the operators between
them, but it’ll be useful to contrast the behaviour with known results for Hilbert spaces, such as
the projection theorem: there is an orthogonal projection onto a closed subspace of Hilbert space.

3If you’ve not seen this before, this shouldn’t be a problem. We will state it, and use it once in
Section 2 in order to show that Hamel bases on Banach spaces are necessarily uncountable. Baire’s
category theorem is also often used to deduce the open mapping theorem and closed graph theorem.
But this isn’t necessary for the course.

4Ideally you’ve seen these before, but for our course the statements will suffice. I invite you to
deduce the open mapping theorem from Baire’s category theorem in Sheet 0, and we will see the
equivalence of these three classical theorems in sheet 2 (and they’re also equivalent to the uniform
boundeness principle). One can also prove these theorems directly; indeed as noted in [3, Theorem
5.11 and the discussion which follows] — a good source for a direct proof of uniform boundedness
— this is how Banach and Steinhaus most likely first proved the uniform boundedness principle.

5Another former lecturer for this course
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2 Normed vector spaces

Let X be a vector space over the field F. Throughout this course F will be either R
or C. We will specify the field when it matters; when we don’t it is to be understood
that the vector space is either real or complex. If several normed vector spaces are
introduced at the same time, they will always be over the same field. Unless the
possibility that X = {0} is explicitly mentioned we assume that X 6= {0}.

Recall that a norm on X is a map ‖ · ‖ : X → [0,∞) such that

• ‖x‖ = 0 if and only if x = 0;

• ‖λx‖ = |λ|‖x‖ for all λ ∈ F, x ∈ X;

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

In particular, any norm ‖ · ‖ induces a metric d : X ×X → [0,∞) given by d(x, y) =
‖x − y‖, x, y ∈ X. We call a vector space equipped with a norm a normed vector
space. A normed vector space X is said to be a Banach space if the metric space
(X, d) is complete. Recall that a complete subspace of a normed vector space is
closed and that a closed subspace of a Banach space is complete.

As always in mathematics, we should have a range of examples to hand. For
now one should have the first three of the following examples to hand.

• n-dimensional Euclidian space ℓ2n, and the various equivalent norms we could
put on these spaces to obtain ℓpn, for 1 ≤ p ≤ ∞

• The standard spaces of infinite sequences ℓ2, ℓ1 and ℓ∞, c0, and the more
general spaces ℓp for 1 ≤ p ≤ ∞.

• C(K) for a compact Hausdorff K (think K = [0, 1]);

• Lp(Ω,Σ, µ) for 1 ≤ p ≤ ∞, and a measure space (Ω,Σ, µ).6

Our notation for open and closed balls will be as follows. For x0 ∈ X and r > 0,
we let

BX(x0, r) =
{

x ∈ X : ‖x− x0‖ ≤ r
}

denote the closed ball, and we let

B◦
X(x0, r) =

{

x ∈ X : ‖x− x0‖ < r
}

denote the open ball. For brevity we let BX(r) = BX(0, r) and B◦
X(r) = B◦

X(0, r).
We also write BX = BX(1) and B◦

X = B◦
X(1) for the unit balls, and we denote the

unit sphere {x ∈ X : ‖x‖ = 1} of X by SX .
Recall that two norms ‖ · ‖ and 9 ·9 on X are said to be equivalent if there exist

constants c, C > 0 such that

c‖x‖ ≤ 9x9 ≤ C‖x‖, x ∈ X.

We already know that if X is finite-dimensional then all norms are equivalent, and
in particular X is complete with respect to the metric induced by any norm. In

6We will look at these spaces in Section 8. It’s not our purpose to give a course on measure
theory, so we’ll keep the amount of measure theory prerequistes to a minimum.
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fact, if dimX = n for n ∈ N then X is isomorphic to Fn with any particular
norm.7 Here and in what follows isomorphic means linearly homeomorphic. If two
normed space X and Y are isomorphic we occasionally write X ≃ Y , and if they are
isometrically isomorphic we write X ∼= Y . For infinite-dimensional vector spaces it
is no longer true that all norms are equivalent (and even two complete norms may
be non-equivalent; see Problem Sheet 1),

On the subject of dimension, recall that dimX is the cardinality of any linearly
independent spanning set of X. Such a set is called a Hamel basis for X.8 Thus a
subset B of X is a Hamel basis if and only if every x ∈ X can be written uniquely
in the form

x =
n
∑

k=1

λkxk

for some n ∈ N, λ1, . . . , λn ∈ F and x1, . . . , xn ∈ B. In the general setting, the
existence of Hamel bases relies on the axiom of choice, in the form of Zorn’s lemma
(often the way that the axiom of choice is used in practise).

A partial ordered set (poset) is a set P together with an order≤ which is reflexive,
transitive and antisymmetric.9 The example of most relevance to us, will be a family
of subsets of a given set, ordered by inclusion. An element x in a poset P is maximal
if x ≤ y implies that y = x.10 A chain C in a poset P is a subset of P which is
totally ordered, i.e. any two elements are comparable.

Theorem 2.1 (Zorn’s Lemma). Let X be a non-empty poset such that every chain
has an upper bound. Then X has a maximal element.

Remark 2.2. Zorn’s Lemma is equivalent to the Axiom of Choice; see for instance
B1.2 Set Theory and C1.4 Axiomatic Set Theory for details. Note that there is no
claim about uniqueness of the maximal element. Not all mathematicians accept the
Axiom of Choice, so it is good practice to be aware of which results depend on it
and which don’t.11

Proposition 2.3. Every non-zero vector space X admits a Hamel basis.

Proof. Let P be the collection of all linearly independent subsets of X ordered
by inclusion (this is certainly non-empty) and suppose that C ⊆ P is a chain. We
claim that A =

⋃

C∈C C is linearly independent, which requires us to check that any
finite collection of vectors in A forms a linearly independent set. So suppose that
{x1, . . . , xn} ⊆ A for some n ∈ N. Then there exist Ck ∈ C such that xk ∈ Ck,

7This is essentially proved by choosing a basis, and using this to show that X is isomorphic to
ℓ1n; see [5, Proposition 1.22], for example.

8In the context of linear algebra, a Hamel basis would simply be called a basis. But in the study
of functional analysis, such bases are not so useful, and we prefer to reserve the term basis for things
like orthogonal bases in a Hilbert space, where we can write every element as a norm convergent
infinite linear combination of the basis. We will return briefly to the topic of Schauder bases, the
appropriate notion of a basis for a Banach space in Section 13.

9if x, y ∈ P have x ≤ y and y ≤ x, then x = y.
10Note the terminology maximal, rather than maximum. The latter would suggest uniqueness,

and in general maximal elements need not be unique.
11With that said, the axiom of choice is not really controversial within functional analysis and

normally assumed without comment. Fundamental results in the field, such as the Hahn-Banach
theorem and the Banach-Alaoglu Theorem
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1 ≤ k ≤ n. Since C is a chain it is easy to see that there exists m ∈ {1, . . . , n} such
that

⋃n
k=1Ck = Cm. Since Cm ∈ P the vectors x1, . . . , xn are linearly independent.

By Zorn’s lemma P has a maximal element, say B. Let Y = spanB and suppose
that x ∈ X. If x 6∈ Y then the set B′ = B ∪ {x} is linearly independent. Moreover,
B ⊆ B′ and hence by maximality B = B′, which is a contradiction. Thus Y = X
and hence B is the required Hamel basis.

Remark 2.4. The proof shows slightly more, namely that for every linearly inde-
pendent subset A of X there exists a Hamel basis B for X such that A ⊆ B. To see
this replace P by those linearly independent subsets of X containing A.

The main use we will have for Hamel bases is producing unbounded linear maps;
one of the reasons that they’re not so useful elsewhere in functional analysis is that
(in the case of complete spaces) they’re always too large. Precisely, as a consequence
of the Baire category theorem, any Hamel basis for an infinite dimensional Banach
space is necessarily uncountable.

Theorem 2.5 (Baire’s Category Theorem). Let (X, d) be a complete metric
space12 and suppose that Un, n ∈ N, are dense open subsets of X. Then

⋂

n≥1 Un is
also dense in X.

Proposition 2.6. Let X be an infinite-dimensional Banach space. Then any Hamel
basis for X must be uncountable.

Proof. Suppose, for the sake of a contradiction, that there exists a countable Hamel
basis B = {xn : n ≥ 1} for X and let Fn = span{xk : 1 ≤ k ≤ n}, n ≥ 1. Then each
of the spaces Fn is finite-dimensional and hence complete, and in particular each Fn

is closed in X. Let Un = X \ Fn, n ≥ 1. Then each Un is open in X and moreover

⋂

n≥1

Un = X \
⋃

n≥1

Fn = ∅.

By the Baire Category Theorem there exists n ≥ 1 such that Un is not dense in
X, which is equivalent to saying that Fn has non-empty interior. Suppose that
x ∈ X and ε > 0 are such that B◦

X(x, ε) ⊆ Fn. Since Fn is a vector space and in
particular closed under translations, it follows that B◦

X(ε) ⊆ Fn, and hence X ⊆ Fn.
In particular, we have dimX ≤ n, which is a contradiction.

Remark 2.7. This result shows that even if X is a separable Banach space it cannot
have a countable Hamel basis. We will see in Section 13 that a more appropriate
notion of basis in the context of Banach spaces is that of a Schauder basis.

Example 2.8. Let X be the space of all polynomials x : [0, 1] → F with coefficients
in F, endowed with the supremum norm ‖x‖∞ = sup0≤t≤1 |x(t)|, x ∈ X. Then X
is a subspace of the Banach space C([0, 1]) of all scalar-valued continuous functions

12The Baire category theorem also works for locally compact Hausdorff spaces; see [7, 2.2], and
provides a notion of typical in the setting of Baire spaces, i.e. those spaces for which the Baire
category theorem holds. That is we can view a property as holding generically if it holds on a set
containing a dense countable intersection of open sets. The point is that countable intersections of
generic properties remain generic — this way of thinking heads towards descriptive set theory, and
gives us a framework for discussing, for example, typical properties of representations.
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defined on [0, 1]. But X is not closed, for otherwise it would be complete and by
Proposition 2.6 this cannot be the case, since the set {xn : n ≥ 0}, where xn(t) = tn

for n ≥ 0 and 0 ≤ t ≤ 1, is a countable Hamel basis for X. In fact, we know from
the Weierstrass Approximation Theorem that X is dense in C([0, 1]).

Lect 2Recall that any vector space X has an associated algebraic dual space X ′ con-
sisting of all linear functionals f : X → F. If X is a normed vector space it is
natural to restrict oneself to the class of continuous, or equivalently bounded, lin-
ear functionals f , which are those satisfying |f(x)| ≤ C‖x‖ for some C > 0 and
all x ∈ X. We write X∗ for the (topological) dual space consisting of all bounded
linear functionals f : X → F. Recall that a linear functional f ∈ X ′ is bounded if
and only if it is continuous at 0, and that this in turn is equivalent to the kernel
Ker(f) = {x ∈ X : f(x) = 0} being a closed subspace of X.13 If X is finite-
dimensional then any linear functional on X is automatically bounded and hence
X ′ = X∗. The situation is different when X is infinite-dimensional.

Proposition 2.9. Suppose that X is an infinite-dimensional normed vector space.
Then there exists an unbounded linear functional f : X → F.

Proof. Let A = {xn : n ∈ N} be a linearly independent subset of X. By Propo-
sition 2.3 and Remark 2.4 there exists a Hamel basis B for X such that A ⊆ B.
Define the functional f by f(xn) = n‖xn‖, n ≥ 1, and f(x) = 0 for all x ∈ B \ A
and extend f linearly to X. Then f ∈ X ′ but f is unbounded.

Example 2.10. Let X be as in Example 2.8. Then the linear functional f on X
given by f(x) = x′(1), x ∈ X, is easily seen to be unbounded, for instance because
f(xn) = n while ‖xn‖∞ = 1 for all n ≥ 1.14

The conclusion of Proposition 2.9 is more interesting in the case where X is
complete, because on such a space any unbounded functional must have non-closed
graph. This follows from another important consequence of the Baire Category
Theorem.15 Recall that, given two normed vector spaces X and Y we write B(X,Y )
for the space of bounded linear operators T : X → Y . Here a linear operator is said
to be bounded if there exists C > 0 such that ‖Tx‖ ≤ C‖x‖ for all x ∈ X. The
infimum over all such C > 0 is the norm of T , denoted by ‖T‖. Recall that

‖T‖ = sup
x∈BX

‖Tx‖ = sup
x∈B◦

X

‖Tx‖ = sup
x∈SX

‖Tx‖ = sup
x 6=0

‖Tx‖

‖x‖
,

and that B(X,Y ) is complete if and only if Y is complete. Note also that X∗ =
B(X,F), which in particular is always complete. For future reference, recall that

13These make good exercises for reviewing your prior functional analysis courses.
14You’ll notice that this explicit example is on a non-complete space, and might be wanting an

explicit example on a Banach space. The existence of discontinuous linear functionals on Banach
spaces relies on the axiom of choice, and it is consistent with ZF set theory without AC that all
linear functionals on Banach spaces are complete. Having said that, finding functional analysts that
don’t subscribe to the axiom of choice is also not straightforward.

15The closed graph theorem is more usually deduced from the open mapping theorem, and this
from the closed graph theorem. But in fact, Banach’s original proof of the open mapping theorem
didn’t use Baire’s category theorem; we will see this in the successive approximations lemma in
Section 4.
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B(X) = B(X,X). Given a linear operator T : X → Y between two normed vector
spaces, we denote the graph of T by GT = {(x, y) ∈ X × Y : Tx = y}. For any
1 ≤ p ≤ ∞ we may endow the cartesian product X × Y with the norm given by

‖(x, y)‖p =

{

(

‖x‖p + ‖y‖p
)1/p

, 1 ≤ p <∞,

max
{

‖x‖, ‖y‖
}

, p = ∞,

for all (x, y) ∈ X × Y . It is straightforward to see that all of these norms are
equivalent, and in fact the topology they define is the product topology on X × Y .
Moreover, if X and Y are Banach spaces then so is X × Y with respect to any of
the norms ‖ · ‖p, 1 ≤ p ≤ ∞.

Theorem 2.11 (Closed Graph Theorem). Suppose that X and Y are Banach
spaces and let T : X → Y be a linear operator. Then T ∈ B(X,Y ) if and only if GT

is closed in X × Y .

Remark 2.12. If X is as in Example 2.8 and Y = C([0, 1]), then the operator
T : X → Y defined by Tx = x′, x ∈ X, is unbounded but has closed graph. Hence
the completeness assumption onX in the Closed Graph Theorem cannot be omitted.
We will see on Problem Sheet 1 that completeness of Y cannot be dropped either.

Remark 2.13. As a complete aside — which you should feel free to ignore — closed
graphs are also particularly useful when we deal with densely defined unbounded
linear operators — such as operators of differentiation on spaces like C(T) or L2(T)
defined where this makes sense — as arise regularly in applications of functional
analysis to partial differential equations. In the absence of boundedness, having a
closed graph is the next best thing.16

3 Direct sums and complemented subspaces

If Y and Z are subspaces of a vector space X, then the sum X0 = Y +Z is a subspace
of X and there is a surjective linear map T : Y ×Z → X0 given by T (y, z) = y+z for
all (y, z) ∈ Y ×Z. Recall that this linear map is injective if and only if Y ∩Z = {0},
in which case we write X0 = Y ⊕Z and call X0 the (algebraic) direct sum of Y and
Z. If X is a normed vector space then the map T is continuous17 but not necessarily
an isomorphism. If the inverse T−1 of T is also continuous we write (once again)
X0 = Y ⊕ Z and say that X0 is the topological direct sum of Y and Z.

Given a vector space X and a subspace Y of X, we say that Y is algebraically
complemented in X if there exists a further subspace Z of X such that X = Y ⊕ Z
as an algebraic direct sum. In this case Z is said to be an algebraic complement of
Y . It is easy to see that the space Y is algebraically complemented if and only if
there exists a projection P : X → X such that RanP = Y . Recall that a projection
is a linear map satisfying P 2 = P and that RanP = {Px : x ∈ X} is the range of P .
It follows from Zorn’s Lemma that every subspace is algebraically complemented in
just the same way as in finite dimensional linear algebra; see Problem Sheet 1.

16I’m talking about densely defined operators here, not everywhere defined operators, so this isn’t
contradicting the closed graph theorem.

17We give Y ×Z the product topology, and equip it with one of the equivalent norms ‖ · ‖p as at
the end of the previous section.
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Similarly, if X is a normed vector space we say that a subspace Y of is (topo-
logically) complemented in X if there exists a further subspace Z of X such that
X = Y ⊕ Z as a topological direct sum. We call Z a (topological) complement of
Y . In this course, since we’re doing functional analysis and not just linear algebra,
by a ‘complemented subspace’ we will always mean a topologically complemented
subspace.

Proposition 3.1. Let X be a normed vector space and suppose that Y and Z are
subspaces of X such that X = Y ⊕ Z algebraically. Then X is the topological direct
sum of Y and Z if and only if the map P : X → X given by P (y+ z) = y for y ∈ Y ,
z ∈ Z is bounded. In particular, a subspace Y of X is complemented if and only if
there exists a bounded projection on X whose range is Y .

Proof. Let us endow the product Y ×Z with the ∞-norm. Then the map T : Y ×
Z → X introduced above satisfies ‖T‖ ≤ 2 and its inverse is given by

T−1x =
(

Px, (I − P )x
)

, x ∈ X.

Thus if P is bounded then so is T−1 and in fact ‖T−1‖ ≤ 1 + ‖P‖, while if T−1 is
bounded then so is P and ‖P‖ ≤ ‖T−1‖. This proves the first part of the result,
and the second part follows easily.

Note that any topologically complemented subspace is closed, as is any topolog-
ical complement. ‘Which closed subspaces of a Banach space are complemented?’
is a fundamental question in Banach space theory. In the Hilbert space setting,
by the Projection Theorem any, closed subspace of a Hilbert space is topologically
complemented, even by a projection of norm 1.18 As we will see right at the end of
the course, for the classical sequence spaces X = c0 or X = ℓp (with 1 ≤ p < ∞,
every infinite dimensional complemented subspace of X is isomorphic to X.

Finally we note that for Banach spaces, an algebraic direct sum of closed sub-
spaces is automatically a topological direct sum. This is a consequence of the fol-
lowing important result, which we recall from an earlier course.

Theorem 3.2 (Inverse Mapping Theorem). Let X and Y be Banach spaces and
suppose that T ∈ B(X,Y ) is a bijection. Then T is an isomorphism.

Theorem 3.3. Let X be a Banach space and suppose that Y and Z are closed
subspaces of X such that X = Y ⊕ Z algebraically. Then X = Y ⊕ Z topologically.

Proof. If we endow the product Y × Z with any of the p-norms, then Y × Z is a
Banach space and hence the map T : Y × Z → X given by T (y, z) = y + z, y ∈ Y ,
z ∈ Z, is a bounded linear bijection between two Banach spaces. By the Inverse
Mapping Theorem T is an isomorphism, so X = Y ⊕ Z topologically.
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4 Quotient spaces and quotient operators

Lect 3Given a vector space X and a subspace Y of X we may consider the cosets

x+ Y = {x+ y : y ∈ Y }, x ∈ X.

These form a vector space with zero element Y = 0+Y , addition given by (x1+Y )+
(x2 + Y ) = (x1 + x2) + Y , x1, x2 ∈ X, and scalar multiplication λ(x+ Y ) = λx+ Y ,
λ ∈ F, x ∈ X. Note that two cosets x1 + Y and x2 + Y coincide if and only if
x1 − x2 ∈ Y . We call this space the quotient space and denote it by X/Y . Recall
that if Z is an algebraic complement of Y in the vector space X,19 then X/Y is
isomorphic to Z as a vector space. We also have a canonical factorisation of linear
maps from the first isomorphism theorem. Given a linear map T : X → Y , we get a
well defined linear bijection T0 : X/Ker (T ) → RanT given by T0(x+KerT) = T (x).
Then T factorises as

X

$$■
■
■
■
■
■
■
■
■

T
// RanT �

�

// Y

X/KerT

T0

99rrrrrrrrrr

This section aims to develop the analogous theory for normed vector spaces.
If X is a normed vector space we may define a map ‖ · ‖ : X/Y → [0,∞) by

‖x+ Y ‖ = dist(x, Y ) = inf{‖x+ y‖ : y ∈ Y }, x ∈ X.

But note that ‖x+ Y ‖ = 0 need not imply that x+ Y = Y , which is to say x ∈ Y .
Instead it only implies that x lies in the closure of Y .

Proposition 4.1. Let X be a normed vector space and suppose that Y is a closed
subspace of X. Then the map ‖ · ‖ : X/Y → [0,∞) given by ‖x + Y ‖ = dist(x, Y ),
x ∈ X, defines a norm on X/Y . Moreover, if X is complete then so is X/Y .

Proof. It is clear from the above remarks that ‖x + Y ‖ = 0 if and only if x ∈ Y .
Moreover, it is easy to see that for λ ∈ F and x ∈ X we have ‖λx+Y ‖ = |λ|‖x+Y ‖.
If x1, x2 ∈ X, then for any y1, y2 ∈ Y

‖x1 + x2 + Y ‖ ≤ ‖x1 + y1 + x2 + y2‖ ≤ ‖x1 + y1‖+ ‖x2 + y2‖,

so taking the infimum over y1, y2 ∈ Y shows that ‖x1+x2+Y ‖ ≤ ‖x1+Y ‖+‖x2+Y ‖.
Thus ‖ · ‖ defines a norm on X/Y . Now suppose that X is complete, and recall that
a normed vector space is complete if and only if every absolutely convergent series
is convergent. Suppose that xn ∈ X, n ≥ 1, are such that

∑∞
n=1 ‖xn + Y ‖ < ∞.

For each n ≥ 1 let yn ∈ Y be such that ‖xn + yn‖ ≤ ‖xn + Y ‖ + 2−n. Then

18This is not true in a Banach space setting, and we will see some examples in example sheet 2.
Moreover a theorem of Lindenstrauss and Tzafriri, beyond the scope of this course, shows that in
fact Hilbert spaces are the only spaces all of whose closed subspaces are complemented. Precisely,
if X is a Banach space, such that every closed subspace is complemented, then X is isomorphic to
a Hilbert space.

19such exists by Zorn’s lemma, as shown on exercise sheet 1.
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∑∞
n=1 ‖xn + yn‖ <∞, so by completeness of X the series

∑∞
n=1(xn + yn) converges

in norm to some z ∈ X. But now
∥

∥

∥

∥

N
∑

n=1

(xn + Y )− (z + Y )

∥

∥

∥

∥

≤

∥

∥

∥

∥

N
∑

n=1

(xn + yn)− z

∥

∥

∥

∥

→ 0, N → ∞.

Hence the norm ‖ · ‖ turns X/Y into a Banach space.

WhenX is a normed vector space and Y is a closed subspace we take the quotient
space X/Y to be endowed with the norm ‖ · ‖ from Proposition 4.1, and we call this
the quotient norm.

Remark 4.2. (a) If X is a normed vector space and Y a closed subspace, then we
may consider the map π : X → X/Y given by π(x) = x + Y , x ∈ X. It is clear
that π is a bounded linear operator and that π(B◦

X) = B◦
X/Y . In fact, π is an open

map and the quotient topology it induces on X/Y is precisely the quotient norm
topology.

(b) We can generalise the construction of quotient spaces. Indeed, given a normed
vector space X and a subspace Y the map p : X → [0,∞) defined by p(x) =
dist(x, Y ) is a seminorm, that is to say it satisfies the axioms for a norm except
that p(x) = 0 need not imply x = 0. Given an arbitrary seminorm p on a vector
space X we may consider the subspace Y = {x ∈ X : p(x) = 0} of X and endow
X/Y with the norm ‖x + Y ‖ = p(x), x ∈ X. Conversely, given a subspace Y of X
and a norm on X/Y we may define a seminorm on X by p(x) = ‖x+ Y ‖, x ∈ X.

Example 4.3. (a) If X is a Hilbert space and Y is a closed subspace, then by the
projection theorem X = Y ⊕ Y ⊥. Let P denote the orthogonal projection onto Y .
Then, given x ∈ X we have x+Y = x−Px+Y and ‖x+Y ‖ = ‖x−Px‖. Thus the
map T : X/Y → Y ⊥ given by T (x+Y ) = x−Px, x ∈ X, is a well-defined isometric
isomorphism, and hence X/Y ∼= Y ⊥.

(b) As an example of the construction mentioned in part (b) of Remark 4.2 let X
be the space of all integrable functions over some measure space (Ω,Σ, µ). If the
seminorm p is given by p(x) =

∫

Ω |x| dµ and if Y = {x ∈ X : p(x) = 0}, then X/Y
is precisely L1(Ω,Σ, µ).

Given vector spaces X and Y and a linear operator T : X → Y , the First Isomor-
phism Theorem tells us that T induces a well-defined linear bijection T0 : X/KerT →
RanT by T0(x+KerT ) = Tx, x ∈ X. We are interested in the topological version.

Lemma 4.4. Let X and Y be normed vector spaces and suppose that T ∈ B(X,Y ).
Then the operator T0 : X/KerT → RanT given by T0(x + KerT ) = Tx, x ∈ X, is
bounded and in fact ‖T0‖ = ‖T‖.

Proof. Given x ∈ X and z ∈ KerT we have

‖T0(x+KerT )‖ = ‖T (x+ z)‖ ≤ ‖T‖‖x+ z‖,

and taking the infimum over z ∈ KerT shows that T0 is bounded with ‖T0‖ ≤ ‖T‖.
On the other hand,

‖Tx‖ = ‖T0(x+KerT )‖ ≤ ‖T0‖‖x+KerT‖ ≤ ‖T0‖‖x‖, x ∈ X,

and hence ‖T‖ ≤ ‖T0‖, as required.
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Given normed vector spaces X and Y and an operator T ∈ B(X,Y ) we say
that T is a quotient operator (an isometric quotient operator) if T is surjective and
the map T0 considered in Lemma 4.4 is an (isometric) isomorphism. Our goal is to
characterise these.

Example 4.5. (a) IfX is a normed vector space and Y is a closed subspace, then the
map π : X → X/Y given by π(x) = x+Y is an isometric quotient operator. Indeed,
π0 is the identity operator on X/Y . We call π the canonical quotient operator.

(b) Suppose that ‖ · ‖ and 9 · 9 are two norms on a vector space X such that
9x9 ≤ C‖x‖ for some C > 0 and all x ∈ X, and let T be the identity operator
from (X, ‖ · ‖) to (X,9 · 9). Then T is a quotient operator if and only if it is an
isomorphism, that is to say if and only if the two norms are equivalent.

Remark 4.6. In some cases it is useful to think of a not necessarily surjective
operator T : X → Y in terms of its so-called canonical factorisation. Indeed, if we
write π : X → X/KerT for the canonical quotient operator and S : RanT → Y for
the usual embedding, then T = S ◦T0 ◦π, where T0 : X/KerT → RanT is as above.
Hence the following diagram commutes:

X Y

X/KerT RanT

T

π

T0

S

Theorem 4.7. Let X and Y be normed vector spaces and suppose that T ∈ B(X,Y ).
Then the following are equivalent:

(a) T is a quotient operator;

(b) There exists M > 0 such that for every y ∈ Y there exists x ∈ X with Tx = y
and ‖x‖ ≤M‖y‖;

(c) There exists r > 0 such that B◦
Y (r) ⊆ T (B◦

X);

(d) T (B◦
X) has non-empty interior;

(e) T is an open map.

Moreover, T is an isometric quotient operator if and only if T (B◦
X) = B◦

Y .

Lect 4Proof. We begin by showing carefully that (a) ⇐⇒ (c). Suppose that T is a
quotient operator. Then T is surjective and there exists r > 0 such that ‖Tx‖ ≥
r‖x + KerT‖ for all x ∈ X. Let y ∈ B◦

Y (r). Then there exists x0 ∈ X such that
Tx0 = y and ‖y‖ ≥ r‖x0+KerT‖. Thus ‖x0+KerT‖ < 1 so there exists z0 ∈ KerT
such that for x = x0+z0 we have x ∈ B◦

X and Tx = y. Hence B◦
Y (r) ⊆ T (B◦

X). Now
suppose conversely that B◦

Y (r) ⊆ T (B◦
X). Then T is clearly surjective. Let x ∈ X

and let y = Tx. For r0 ∈ (0, r) there exists z ∈ B◦
X such that for x0 = r−1

0 ‖y‖z we
have Tx0 = y. Hence r0‖x+KerT‖ ≤ r0‖x0‖ ≤ ‖Tx‖, so T is a quotient operator.
In fact, since r0 ∈ (0, r) was arbitrary it follows that ‖Tx‖ ≥ r‖x+KerT‖, x ∈ X.

It is straightforward to see that (a) =⇒ (b), and in fact if ‖Tx‖ ≥ r‖x+KerT‖
for all x ∈ X then (b) holds for any M > r−1. Moreover, (b) =⇒ (c) with r =M−1,
and (c) =⇒ (d) is trivial. If (d) holds and T (B◦

X) contains B◦
Y (Tx0, r) for some

11



x0 ∈ B◦
X and some r > 0, then by symmetry T (B◦

X) also contains B◦
Y (−Tx0, r) and

hence by convexity it also contains

B◦
Y (r) =

1

2
B◦

Y (Tx0, r) +
1

2
B◦

Y (−Tx0, r).

Suppose that U ⊆ X is open and that y ∈ T (U). Then y = Tx for some x ∈ U .
Since U is open there exists ε > 0 such that B◦

X(x, ε) = x + B◦
X(ε) ⊆ U . Then by

linearity of T we see that B◦
Y (y, rε) ⊆ T (B◦

X(x, ε)) ⊆ T (U), so T (U) is open and
(d) =⇒ (e). Finally, if (e) holds then T (B◦

X) is open and it certainly contains the
origin. Hence (e) =⇒ (c).

For the final statement, note that if T is an isometric quotient operator then the
proof of (a) =⇒ (c) shows that B◦

Y ⊆ T (B◦
X). Moreover, ‖T‖ = ‖T0‖ = 1 and hence

T (B◦
X) ⊆ B◦

Y . Conversely, if T (B
◦
X) = B◦

Y then the proof of (c) =⇒ (a) shows that
‖Tx‖ ≥ ‖x+KerT‖ for all x ∈ X. We also have ‖T‖ = 1 and hence ‖T0‖ = 1. Thus
‖Tx‖ = ‖x+KerT‖ for all x ∈ X and T is an isometric quotient operator.

In the Banach space setting we can once again say more.

Theorem 4.8 (Open Mapping Theorem). Let X and Y be Banach spaces and
suppose that T ∈ B(X,Y ) is a surjection. Then T is an open map.

By Theorem 4.7 this tells us that if X and Y are Banach spaces then an operator
T ∈ B(X,Y ) is a quotient operator if and only if it is surjective.20 In order to improve
Theorem 4.7 even further we require the following lemma which is used in the proof
of the Open Mapping Theorem.

Lemma 4.9 (Successive Approximations Lemma). Let X be a Banach space,
Y a normed vector space and T ∈ B(X,Y ). Suppose there exist ε ∈ (0, 1) and M > 0
such that dist(y, T (B◦

X(M))) < ε for all y ∈ B◦
Y . Then B◦

Y ⊆ T (B◦
X(M(1− ε)−1)).

Furthermore, if T (B◦
X(M)) contains a dense subset of B◦

Y , then B
◦
Y ⊆ T (B◦

X(M)).
In either case, T is a quotient operator and Y is complete.

Proof. Let y ∈ B◦
Y . We recursively define sequences (xn)

∞
n=1 in X and (yn)

∞
n=1

in Y as follows. Set y1 = y and let x1 ∈ B◦
X(M) be such that ‖Tx1 − y1‖ < ε.

Supposing we have xn ∈ X and yn ∈ Y such that ‖yn‖ < εn−1, ‖xn‖ < Mεn−1

and ‖Txn − yn‖ < εn, we set yn+1 = yn − Txn. Since ε−n‖yn+1‖ < 1 there exists
x′n+1 ∈ B◦

X(M) such that ‖Tx′n+1 − ε−nyn+1‖ < ε. If we let xn+1 = εnx′n+1 then
‖xn+1‖ < Mεn and we may continue inductively. Since

∑∞
n=1 ‖xn‖ < ∞ and X is

complete, the series
∑∞

n=1 xn converges to some x ∈ X satisfying

‖x‖ ≤
∞
∑

n=1

‖xn‖ <
M

1− ε
.

Moreover,
∥

∥

∥

∥

y −
n
∑

k=1

Txk

∥

∥

∥

∥

= ‖yn+1‖ < εn → 0, n→ ∞.

20So,in the Banach space setting, we have the same result as in linear algebra: a surjective
morphism T : X → Y (i.e. bounded linear map) induces an isomorphism (in the category of
Banach spaces with bounded linear maps) between the quotient space X/KerT and Y .
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By continuity of T we obtain that Tx = y, which proves the first claim. If T (B◦
X(M))

contains a dense subset of B◦
Y , then B

◦
Y ⊆ T (B◦

X(M))+B◦
Y (ε) and hence B◦

Y (1−ε) ⊆
T (B◦

X(M)) for all ε ∈ (0, 1). It follows that

B◦
Y =

⋃

ε∈(0,1)

B◦
Y (1− ε) ⊆ T (B◦

X(M)),

as required. In either case Theorem 4.7 shows that T is a quotient operator. Thus
Y is isomorphic to the Banach space X/KerT and hence Y itself is complete.

Remark 4.10. If in Theorem 4.7 we assume X to be complete, then by Lemma 4.9
we may weaken the conditions in (c) and (d). For instance, in (c) it would be
sufficient to require that the closure of T (BX) contains B◦

Y (r) for some r > 0, or
indeed that there exist ε ∈ (0, 1) and r > 0 such that B◦

Y (r) ⊆ T (B◦
X) + B◦

Y (ε). In
the first case we need to recall that by continuity of T the closures of T (B◦

X) and
T (BX) coincide. Furthermore, a necessary and sufficient condition for T to be an
isometric quotient operator is now that the closure of T (BX) equals BY .

5 The Hahn-Banach Theorems

The Hahn-Banach theorems refer to a range21 of theorems in functional analysis
concerned with extension of functionals, and separation of points and sets.

• Extension Given a linear functional g defined on a subspace Y of a vector
space X, when can we extend g to a functional defined on X? Asked like
this, the answer is always22, so a more useful version of this question imposes
some control on g, and asks for extensions retaining control. For example
(and probably the version of Hahn-Banach you’re familiar with already), if X
is a normed space, we can extend bounded linear functionals from subspaces
without increasing the norm (see Remarks 5.4 and 5.7).

• Separation Given disjoint subsets A and B of a vector space X, when we can
we separate these by hyperplanes, i.e. in the case of real vector spaces find a
linear functional f on X and constant c such that f(a) < c for all a ∈ A, while
f(b) > c for all b ∈ B. Drawing some pictures in 2 dimensions should convince
you that at the very least you’ll need some convexity (and for the version I’ve
stated both A and B to be closed). Is convexity enough?

The version of control we will use for extension in this course is sublinearity.
Given a vector space X, a map p : X → R is said to be a sublinear functional if it
satisfies the following two properties:

• p(λx) = λp(x) for all λ > 0 and all x ∈ X;

• p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

21We will see further versions in Section 9, and in the exercises. Annoyingly in the literature it
is quite normal to say ’by Hahn-Banach’ to refer to any version, or some corollary thereof. At least
in this course we will try and do better.

22Using Hamel bases and the axiom of choice.
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Note that any sublinear functional satisfies p(0) = 0. Any seminorm, and in par-
ticular any norm, is a sublinear functional. Moreover, if F = R then any linear
functional on X is also a sublinear functional.

An important example of a sublinear functional is the Minkowski functional of
a convex set.23 Suppose that C is a convex subset of X which is absorbing in the
sense that for each x ∈ X there exists λ > 0 such that λx ∈ C. Then for each x ∈ X
the set {λ ∈ R : λx ∈ C} is an interval containing 0. The Minkowski functional pC
of C is defined by

pC(x) = inf
{

λ > 0 : λ−1x ∈ C
}

, x ∈ X.

The set C is said to be symmetric (or sometimes balanced when F = C) if x ∈ C
implies λx ∈ C for all λ ∈ F with |λ| = 1. A set of the form {λx : λ > 0} with
x ∈ X \ {0} is called an infinite ray.

Lemma 5.1. Suppose that C is a convex absorbing subset of a vector space X. Then
pC is a sublinear functional. If C is symmetric, then pC is a seminorm. If C in
addition contains no infinite rays, then pC is a norm.

Proof. Let x ∈ X. If x = 0 then λ−1x ∈ C for all λ > 0 and hence pC(x) = 0. If
x 6= 0 and µ > 0 is such that µx ∈ C, then by convexity λ−1x ∈ C for all λ ≥ µ−1. It
follows that pC(x) is well-defined and that 0 ≤ pC(x) ≤ µ−1. To prove subadditivity,
let x, y ∈ X and define Sx = {λ > 0 : λ−1x ∈ C} and Sy = {λ > 0 : λ−1y ∈ C}. For
λ ∈ Sx, µ ∈ Sy we have by convexity

x+ y

λ+ µ
=

λ

λ+ µ
λ−1x+

µ

λ+ µ
µ−1y ∈ C,

and hence λ+µ ≥ pC(x+y). Taking the infimum over λ ∈ Sx and µ ∈ Sy shows that
pC is subadditive. If λ > 0 and x ∈ X, then {µ > 0 : µ−1λx ∈ C} = {λµ : µ−1x ∈
C}, and hence pC(λx) = λpC(x). If C is symmetric, a similar argument shows that
pC(λx) = |λ|pC(x) for all λ ∈ F and x ∈ X. Suppose finally that pC(x) = 0. Then
λ−1x ∈ C for all λ > 0, so either x = 0 or C contains an infinite ray. Thus if C is
symmetric and contains no infinite rays then pC is a norm on X.

Remark 5.2. If X is a normed vector space and C is a convex absorbing subset of
X, then C = {x ∈ X : pC(x) < 1} if C is open and C = {x ∈ X : pC(x) ≤ 1} if C is
closed. Moreover, if B◦

X ⊆ C ⊆ BX then pC(x) = ‖x‖ for all x ∈ X.
When we first consider norms, we often draw pictures of the unit ball in R2

with respeect to the p-norms. What we’re doing with these Minkowski functionals
is not dissimilar; one is specifying a ball and producing a corresponding sublinear
functional.24

Lect 5
Theorem 5.3 (Hahn-Banach Extension Theorem, real case). Let X be a real
vector space and let Y be a subspace of X. Suppose that p is a sublinear functional
on X and that g ∈ Y ′ is such that g(y) ≤ p(y) for all y ∈ Y . Then there exists
f ∈ X ′ such that f |Y = g and f(x) ≤ p(x) for all x ∈ X.

23This starts to expose the deep connection between Hahn-Banach extension type theorems and
convexity. This goes a lot further than we’ll see in the course.

24We’ll return to this point on example sheet 2.
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Remark 5.4. If p is a (semi)norm then the assumption on g in fact implies that
|g(y)| ≤ p(y) for all y ∈ Y . Thus Theorem 5.3 contains the standard version of
the Hahn-Banach Theorem allowing us to extend a bounded linear functional on a
(possibly non-separable) normed vector space without increasing its norm.

Lemma 5.5. Let X be a real vector space and let Y be a proper subspace of X.
Suppose that p is a sublinear functional on X and that g ∈ Y ′ is such that g(y) ≤ p(y)
for all y ∈ Y . Suppose moreover that x0 ∈ X \ Y and let Z be the linear span of
Y ∪{x0}. Then there exists f ∈ Z ′ such that f |Y = g and f(z) ≤ p(z) for all z ∈ Z.

Proof. Every z ∈ Z can be uniquely expressed in the form z = y+λx0 with y ∈ Y
and λ ∈ R. This forces f to be of the form f(y + λx0) = g(y) + cλ for some c ∈ R,
which remains to be fixed. Now the condition f(z) ≤ p(z) for all z ∈ Z is equivalent
to g(y) + cλ ≤ p(y + λx0) for all y ∈ Y and λ ∈ R. For λ = 0 the condition is true
for all y ∈ Y by assumption, and distinguishing the cases λ ≷ 0 it is straightforward
to see that our condition is equivalent to having

g(y1)− p(y1 − x0) ≤ c ≤ p(y2 + x0)− g(y2), y1, y2 ∈ Y.

We need to show that, for y1, y2 ∈ Y ,

g(y1 + y2) ≤ p(y1 − x0) + p(y2 + x0).

But this follows immediately from the assumption on g and subadditivity of p. Thus

sup
{

g(y)− p(y − x0) : y ∈ Y
}

≤ inf
{

p(y + x0)− g(y) : y ∈ Y
}

,

and we may choose c to be any number between these two quantities.25

If the space X in Theorem 5.3 is a separable normed vector space and p is the
norm, then we may this lemma repeatedly to extend g by one dimension at a time,
thus defining f on a dense subset of X, and then we may extend to the whole of X
using continuity. In the non-separable case we use26 Zorn’s Lemma.

Proof of Theorem 5.3: We say that a real valued function f is a g-extension if
its domain D(f) is a subspace of X containing Y , and f is linear, with f |Y = g and
f(z) ≤ p(z) for all z ∈ D(f). Let P be the collection of all such g-extensions (noting
that this is non-empty as g is a g-extension) equipped with the partial order f1 - f2
if and only if D(f1) ⊂ D(f2) and f2|D(f1) = f1.

27 Given any chain {fi : i ∈ C} in P,
note that

⋃

i∈C D(fi) is a subspace of X (containing Y ) and we can define a linear
map f : D(f) → R by f(x) = fi(x) for x ∈ Dom(fi). This f is a g-extension28 so
provides an upper bound for the chain.

Therefore Zorn’s Lemma there is a maximal g-extension f . If D(f) 6= X, then
choose x0 ∈ X \ D(f), and extend f by Lemma 5.5 to some f1 ∈ P defined on
Span(D(f) ∪ {x0}), contradicting maximality.

25So the extension will be unique when these two quantities are equal. We’ll investigate how to
characterise uniqueness of extension on example sheet 3.

26Strictly speaking there’s a bit of logical overkill here. Hahn-Banach is weaker than the axiom of
choice, but strong enough to imply the existence of non-Lebesgue measurable sets and the Banach-
Tarski paradox. The exact logical statement equivalent to Hahn-Banach is a little fiddly though.

27Note that f1 - f2 is exacty the relation that the graph of f1 is a subset of the graph of f2.
28Can you justify all these claims?
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If F = C and functionals are complex-valued and complex-linear, then the sub-
linear functional appearing in Theorem 5.3 needs to be replaced by a seminorm.
Surprisingly the following result was obtained around 10 years after the real version.

Theorem 5.6 (Hahn-Banach Extension Theorem, complex case). Let X be
a complex vector space and let Y be a subspace of X. Suppose that p is a seminorm
on X and that g ∈ Y ′ is such that |g(y)| ≤ p(y) for all y ∈ Y . Then there exists
f ∈ X ′ such that f |Y = g and |f(x)| ≤ p(x) for all x ∈ X.

Proof. Observe first that we may regard a complex vector space as a real vec-
tor space with the same operations, and that the assignment f 7→ Re f sending a
complex-linear functional f to the real-linear functional Re f given by (Re f)(x) =
Re f(x), x ∈ X, is a bijection. Indeed, it is clear that Re f is real-linear, and if
Re f = Re g for two complex-linear functionals f and g then, for x ∈ X,

Im f(x) = −Re(if(x)) = −Re(f(ix)) = −Re(g(ix)) = −Re(ig(x)) = Im g(x),

and hence f = g, so the assignment is injective. On the other hand, if g is a real-linear
functional then it is easy to verify that the functional f given by f(x) = g(x)−ig(ix)
for x ∈ X is complex-linear and satisfies Re f = g, so the assignment is surjective.
Our next observation is that Re f(x) ≤ p(x) for all x ∈ X if and only if |f(x)| ≤ p(x)
for all x ∈ X. Indeed, one implication is trivial and for the other we note that if
Re f(x) ≤ p(x) for all x ∈ X then for some θ ∈ [0, 2π) depending on x ∈ X we have

|f(x)| = e−iθf(x) = Re f(e−iθx) ≤ p(e−iθx) = p(x), x ∈ X.

Thus given g : Y → C as in the statement of the theorem, we may apply Theorem 5.3
to find a real-linear functional f0 : X → R such that f0|Y = Re g and f0(x) ≤ p(x) for
all x ∈ X. Now set f(x) = f0(x)− if0(ix), x ∈ X. Then f ∈ X ′ and |f(x)| ≤ p(x),
x ∈ X. Furthermore, we have Re f(y) = Re g(y) for all y ∈ Y , so arguing as before
we see that f |Y = g, as required.

Remark 5.7. The above proof also shows that ifX is a complex normed vector space
and f ∈ X∗, then the real-linear functional Re f is bounded with ‖Re f‖ = ‖f‖.
Note too that Theorem 5.6 contains the usual Hahn-Banach extension theorem for
bounded linear functionals on complex normed spaces.

In the next result we collect some of the standard consequences of the Hahn-
Banach Theorem. Here and in what follows, given a subset M of a normed vector
space X we denote the annihilator of M in X∗ by

M◦ =
{

f ∈ X∗ : f(x) = 0 for all x ∈M
}

,

and given a subset N of X∗ we let

N◦ =
{

x ∈ X : f(x) = 0 for all f ∈ N
}

be the annihilator of N in X. It is clear that annihilators are closed subspaces.

Corollary 5.8. Let X be a normed vector space.

(a) For each x0 ∈ X there exists f ∈ SX∗ such that f(x0) = ‖x0‖. In particular,
‖x‖ = max{|f(x)| : f ∈ SX∗} for all x ∈ X.
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(b) If Y is a subspace of X and x0 ∈ X, then there exists f ∈ Y ◦ such that ‖f‖ ≤ 1
and f(x0) = dist(x0, Y ). In particular, the closure of Y coincides with (Y ◦)◦
and Y is dense in X if and only if Y ◦ = {0}.

Proof. For the first part of (a) we may take any f ∈ SX∗ if x0 = 0, and otherwise
it suffices to apply the Hahn-Banach Theorem to the linear functional g defined on
span{x0} by g(λx0) = λ‖x0‖, λ ∈ F. The second part then follows easily. For part
(b) we may consider the seminorm p(x) = dist(x, Y ), x ∈ X, and g : span{x0} → F

given by g(λx0) = λ dist(x0, Y ), λ ∈ F. By the Hahn-Banach Theorem there exists
a linear functional f : X → F such that f(x0) = g(x0) = dist(x0, Y ) and |f(x)| ≤
p(x) ≤ ‖x‖ for all x ∈ X. In particular, f ∈ X∗ with ‖f‖ ≤ 1 and f ∈ Y ◦ since
|f(x)| ≤ p(x) = 0 for all x ∈ Y . The remaining statements follow straightforwardly
from the fact that dist(x, Y ) = 0 if and only if x lies in the closure of Y .

Lect 6Let X be a normed vector space and suppose that C ⊆ X and x0 ∈ X \ C. We
say that x0 and C are strictly separated if there exists f ∈ X∗ such that Re f(x0) >
Re f(x) for all x ∈ C, and that they are uniformly separated if there exists f ∈ X∗

such that
Re f(x0) > sup{Re f(x) : x ∈ C}.

If F = R the real parts are redundant.

Theorem 5.9 (Hahn-Banach Separation Theorem). Let X be a normed vector
space and suppose that C is a non-empty convex subset of X and that x0 ∈ X \ C.

(a) If C is open, then x0 and C are strictly separated.

(b) If C is closed, then x0 and C are uniformly separated.

Proof. (a) Fix y0 ∈ C and let z0 = x0 − y0 and C0 = C − y0. Since C is open
we have B◦

X(ε) ⊆ C0 for some ε > 0. In particular, the set C0 is absorbing so the
Minkowski functional p = pC0

is a well-defined sublinear functional on X. Note also
that p(x) ≤ ε−1‖x‖ for all x ∈ X. Consider the functional g : span{z0} → F given
by g(λz0) = λ, λ ∈ F. Since z0 6∈ C0 we have p(z0) ≥ 1 = g(z0). Suppose first that
F = R. Then for λ ≥ 0 we have p(λz0) = λp(z0) ≥ g(λz0), while for λ < 0 we have
p(λz0) ≥ 0 > g(λz0). By the Hahn-Banach Extension Theorem there exists a linear
functional f on X such that f(λz0) = λ for all λ ∈ R and f(x) ≤ p(x) ≤ ε−1‖x‖ for
all x ∈ X, so f ∈ X∗. Let x ∈ C. Then there exists δ > 0 such that x+ δz0 ∈ C, so
p(x+ δz0 − y0) ≤ 1 and hence

f(x) + δ = f(x+ δz0 − x0) + f(x0) ≤ p(x+ δz0 − y0)− 1 + f(x0) ≤ f(x0),

giving f(x) < f(x0). If F = C we find, by considering X as a real vector space and
proceeding as above, a bounded real-linear functional f0 on X such that f0(x) <
f0(x0) for all x ∈ C. As in the proof of Theorem 5.6 we now take f ∈ X∗ to be
given by f(x) = f0(x)− if0(ix), x ∈ X, so that f0 = Re f .

(b) If C is closed and x0 6∈ C then there exists ε > 0 such that x0 6∈ Cε = C+B◦
X(ε).

Since Cε is open and convex we may apply part (a) to find f ∈ X∗ such that
Re f(x) < Re f(x0) for all x ∈ Cε. Let z0 ∈ X be such that f(z0) = 1 and let δ > 0
be such that δ‖z0‖ < ε. Then for all x ∈ C we have x+ δz0 ∈ Cε and hence

Re f(x) = Re f(x+ δz0)− δ < Re f(x0)− δ,

which gives the result.
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Recall that, given a bounded linear operator T : X → Y between two normed vec-
tor spaces, the (topological) dual operator T ∗ : Y ∗ → X∗ of T is given by (T ∗f)(x) =
f(Tx) for f ∈ Y ∗, x ∈ X. We know that T ∗ ∈ B(Y ∗, X∗), and by a standard
application of the Hahn-Banach Theorem we have ‖T ∗‖ = ‖T‖. Recall also that
T is said to be an isomorphic embedding if there exists a constant r > 0 such that
‖Tx‖ ≥ r‖x‖ for all x ∈ X. This is equivalent to saying that T maps isomorphically
onto its range.

Theorem 5.10. Let X and Y be normed spaces and suppose that T ∈ B(X,Y ).

(a) T is an isomorphic embedding (an isometry) if and only if T ∗ is a quotient
operator (an isometric quotient operator).

(b) If T is a quotient operator (an isometric quotient operator) then T ∗ is an
isomorphic embedding (an isometry), and if X is complete the converse holds.

Proof. (a) Suppose that T is an isomorphic embedding, so that there exists r > 0
such that ‖Tx‖ ≥ r‖x‖ for all x ∈ X. Let Z = RanT . Given g ∈ X∗ we may
define h ∈ Z ′ by setting h(Tx) = g(x), x ∈ X. This is well-defined by injectivity of
T , and moreover |h(Tx)| ≤ ‖g‖‖x‖ ≤ M‖g‖‖Tx‖, x ∈ X, where M = r−1. Thus
h ∈ Z∗ and by the Hahn-Banach Theorem there exists f ∈ Y ∗ such that f |Z = h and
‖f‖ = ‖h‖ ≤M‖g‖. Thus T ∗f = g and, by Theorem 4.7, T ∗ is a quotient operator.
If T is an isometry we may take r =M = 1 and hence ‖T ∗f‖ ≥ ‖f‖ ≥ ‖f+KerT ∗‖.
Since ‖(T ∗)0‖ = ‖T ∗‖ = ‖T‖ = 1 it follows that T ∗ is an isometric quotient operator.

Conversely, suppose that T ∗ is a quotient operator. Then T ∗ is surjective and
there exists r > 0 such that ‖T ∗f‖ ≥ r‖f + KerT ∗‖ for all f ∈ Y ∗. Hence by
Theorem 4.7 there exists M > 0 such that for every g ∈ X∗ there exists f ∈ Y ∗

with T ∗f = g and ‖f‖ ≤M‖g‖, and as observed in the proof of that result we may
take any M > r−1. Now by Corollary 5.8, given x ∈ X, there exists g ∈ SX∗ such
that g(x) = ‖x‖. Choose f ∈ Y ∗ so that T ∗f = g and ‖f‖ ≤M . Then

‖x‖ = g(x) = f(Tx) ≤ ‖f‖‖Tx‖ ≤M‖Tx‖, (5.1)

which shows that T is an isomorphic embedding. If T ∗ is an isometric quotient
operator we may choose r = 1 and then, for every x ∈ X, (5.1) holds for all M > 1.
In particular, ‖Tx‖ ≥ ‖x‖ for all x ∈ X. Since ‖T‖ = ‖T ∗‖ = 1, T is an isometry.

(b) If T is quotient operator, then T is surjective and there exists r > 0 such
that ‖Tx‖ ≥ r‖x+KerT‖ for all x ∈ X. By Theorem 4.7 there exists M > 0 such
that for every y ∈ Y there exists x ∈ X with Tx = y and ‖x‖ ≤ M‖y‖ and once
again any M > r−1 works. Given y ∈ Y , let x ∈ X be as described. Then

|f(y)| = |T ∗f(x)| ≤ ‖T ∗f‖‖x‖ ≤M‖T ∗f‖‖y‖,

and hence ‖f‖ ≤ M‖T ∗f‖ for all f ∈ Y ∗, so T ∗ is an isomorphic embedding. If T
is an isometric quotient operator we may take r = 1 and then, for every f ∈ Y ∗,
we have ‖f‖ ≤ M‖T ∗f‖ for all M > 1. Hence ‖T ∗f‖ ≥ ‖f‖ for all f ∈ Y ∗. Since
‖T ∗‖ = ‖T‖ = ‖T0‖ = 1, T ∗ is an isometry.

The final statement requires the Hahn-Banach Separation Theorem and the Suc-
cessive Approximations Lemma; see Problem Sheet 2.
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Remark 5.11. In the setting of Theorem 5.10 we always have RanT ∗ ⊆ (KerT )◦.
If T is surjective and g ∈ (KerT )◦ the map f(Tx) = g(x), x ∈ X, is a well-
defined linear functional on Y . If T is a quotient operator an argument similar
to the one used in part (b) above shows that f ∈ Y ∗. Since g = T ∗f we have
that RanT ∗ = (KerT )◦ in this case. In particular, T ∗ has closed range. Recall
that we always have (RanT ∗)◦ = KerT and (RanT )◦ = KerT ∗. In particular, by
Corollary 5.8 the closure of RanT coincides with (KerT ∗)◦, but in general even the
closure of RanT ∗ is contained in (KerT )◦ as a proper subset. We shall return to
this issue in later sections.

Corollary 5.12. Let X be a normed vector space and Y a closed subspace of X.
Then Y ∗ ∼= X∗/Y ◦ and (X/Y )∗ ∼= Y ◦.

Proof. Let S : Y → X denote the inclusion operator and let π : X → X/Y denote
the canonical quotient map. Then S is an isometry and π is an isometric quotient
operator. By Theorem 5.10, S∗ : X∗ → Y ∗ is an isometric quotient operator and
π∗ : (X/Y )∗ → X∗ is an isometry. But KerS∗ = (RanS)◦ = Y ◦, and hence Y ∗ ∼=
X∗/Y ◦. By Remark 5.11 we have Ranπ∗ = (Kerπ)◦ = Y ◦, so (X/Y )∗ ∼= Y ◦.

6 Biduals and reflexivity

Lect 7Given a normed vector space X, the dual space X∗ is a Banach space and in par-
ticular has a dual space X∗∗ = (X∗)∗ of its own, the so-called bidual of X. Re-
call that there always exists a well-defined linear map JX : X → X∗∗ given by
(JXx)(f) = f(x) for x ∈ X and f ∈ X∗. By Corollary 5.8 we have

‖JX(x)‖ = max{|f(x)| : f ∈ SX∗} = ‖x‖, x ∈ X,

so JX is an isometry. The space X is said to be reflexive if JX is surjective.
Given any metric space X, a pair (Y, J) is said to be a completion of X if Y is

a complete metric space and J : X → Y is an isometry whose range is dense in Y .
Every metric space has a completion, and this is usually proved by considering a
quotient of the space of all Cauchy sequences. In the case of normed vector spaces
we obtain this result with very little effort by a different argument.

Proposition 6.1. Every normed vector space X has a completion (Y, J) such that
Y is a Banach space and J is linear.

Proof. Let Y be the closure of JX(X) in X∗∗ and consider the map J : X → Y
given by J(x) = JX(x), x ∈ X. Then Y is a closed subspace of the Banach spaceX∗∗

and therefore itself is complete, and the range of J is dense in Y by construction.

Let us recall briefly some examples of classical Banach spaces. We write ℓ∞

for the space of all bounded scalar-valued sequences x = (xn)n≥1, and we endow
this space with the supremum norm given by ‖x‖∞ = supn≥1 |xn|. We write c
for the subspace of ℓ∞ given by sequences x such that limn→∞ xn exists, and we
let c0 denote the subspace of sequences converging to zero. With the supremum
norm both of these are closed subspaces of ℓ∞ and hence themselves Banach spaces.
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For 1 ≤ p < ∞ we let ℓp denote the space of scalar-valued sequences x for which
∑∞

n=1 |xn|
p <∞, endowed with the norm

‖x‖p =

(

∞
∑

n=1

|xn|
p

)1/p

.

We denote by en, n ≥ 1, the sequence (δn,k)k≥1 and we let c00 = span{en : n ≥ 1}
be the space of finitely supported sequences. Then c00 is dense in c0 and in ℓp for
1 ≤ p <∞, but not in c or in ℓ∞.

If 1 ≤ p ≤ ∞ we say that q is the Hölder conjugate of p if 1 ≤ q ≤ ∞ and
p−1 + q−1 = 1. You will have shown previously that the dual of ℓp for 1 ≤ p < ∞
is isometrically isomorphic to ℓq, where q is the Hölder conjugate of p, via the map
Φp : ℓ

q → (ℓp)∗ given by

(Φpy)(x) =

∞
∑

n=1

xnyn, x ∈ ℓp, y ∈ ℓq.

In particular, (ℓ1)∗ ∼= ℓ∞. Similarly, the duals of c and c0 are both isomorphically
isometric to ℓ1 by the maps Φ: ℓ1 → c∗ and Ψ: ℓ1 → c∗0 given by

(Φy)(x) = y1 · lim
n→∞

xn +
∞
∑

n=1

xnyn+1, x ∈ c, y ∈ ℓ1,

and

(Ψy)(x) =
∞
∑

n=1

xnyn, x ∈ c0, y ∈ ℓ1,

respectively. Note in particular that for 1 < p < ∞ the space ℓp is isometrically
isomorphic to its bidual. Let X = ℓp for 1 < p < ∞ and let q be the Hölder
conjugate of p. Then JX = (Φ−1

p )∗ ◦ Φq. Indeed, for x ∈ X and f ∈ X∗ we have
f = Φp(y) for some y ∈ ℓq, and hence

(

(Φ−1
p )∗(Φqx)

)

(f) = (Φqx)(y) =
∞
∑

n=1

xnyn = (Φpy)(x) = f(x) = (JXx)(f),

so X is in fact reflexive. Other examples of reflexive spaces include all finite-
dimensional spaces, all Hilbert spaces and, as we shall prove in Section 8, all Lp-
spaces for 1 < p <∞.

Remark 6.2. A construction due to R.C. James (1951) shows that it is possible for
a Banach space to be isometrically isomorphic to its bidual and yet non-reflexive.

We also see from the above considerations that the spaces c and c0 are non-
reflexive. Indeed, both spaces are separable but their bidual is isometrically isomor-
phic to ℓ∞, which is non-separable. Recall that a normed vector space is said to be
separable if it contains a countable dense subset. We will see on Problem Sheet 2
that c0 not only fails to be isometrically isomorphic to its bidual, it is in fact not
(isometrically) isomorphic to the dual of any normed vector space. Notice, however,
that not knowing the dual of ℓ∞ makes it hard to say anything about reflexivity of
ℓ1 for the moment. Separability turns out to be useful here too.
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Lemma 6.3. Let X be a normed vector space and suppose that X∗ is separable.
Then X too is separable.

Proof. Let {fn : n ≥ 1} be a dense subset of SX∗ and, for each n ≥ 1, let xn ∈ BX

be such that |fn(xn)| ≥ 1/2. Let Y = span{xn : n ≥ 1}. In order to show that X is
separable it suffices, by a standard result, to prove that Y is dense in X. If this is
not the case, then by Corollary 5.8 there exists f ∈ SX∗ ∩ Y ◦. Thus for some n ≥ 1
we have ‖f − fn‖ < 1/2 and consequently

|f(xn)| ≥ |fn(xn)| − ‖f − fn‖ > 0,

which is a contradiction. Hence X is separable.

It follows that ℓ1 cannot be reflexive, since if it were then its bidual would have
to be separable and hence so would its dual. But we know that the dual of ℓ1 is
isometrically isomorphic to ℓ∞ and in particular non-separable. More generally, the
result shows that any separable normed vector with non-separable dual cannot be
reflexive. The next result gives another way of seeing why ℓ1, and indeed many other
spaces, cannot be reflexive.

Theorem 6.4. Let X be a normed vector space. Then X is reflexive if and only if
X is complete and X∗ is reflexive.

Proof. Suppose first that X is reflexive. Then X is isometrically isomorphic to its
own bidual, which is a Banach space, and hence X is necessarily complete. Suppose
that ξ ∈ X∗∗∗ and let f = ξ ◦ JX , noting that f ∈ X∗. Then given φ ∈ X∗∗ we have
by reflexivity of X that φ = JX(x) for some x ∈ X, and hence

ξ(φ) = ξ(JXx) = f(x) = (JXx)(f) = (JX∗f)(φ),

so ξ = JX∗(f) and X∗ is reflexive.
Conversely, if X is complete and X∗ is reflexive, then the image Y = JX(X) of

X under the isometry JX is complete and hence closed in the bidual X∗∗. Suppose
that ξ ∈ Y ◦. Then ξ = JX∗(f) for some f ∈ X∗ and f(x) = (JXx)(f) = ξ(JXx) = 0
for all x ∈ X. Hence f = 0 and therefore ξ = 0, so Y ◦ = {0}. By Corollary 5.8 we
see that Y is dense in X∗∗. Since Y is closed we have Y = X∗∗, so X is reflexive.

Using this result we see again that ℓ1 cannot be reflexive because it is (isomorphic
to) the dual of the non-reflexive space c0. A similar argument works for ℓ∞ and
indeed for any Banach space which is isomorphic to the dual of a non-reflexive
Banach space. Implicit in these statements is the observation that reflexivity is
preserved under isomorphism.

Proposition 6.5. Let X, Y be two normed spaces which are isomorphic. Then X
is reflexive if and only if Y is.

Proof. Let T ∈ B(X,Y ). For x ∈ X and f ∈ Y ∗ we have
(

(T ∗∗ ◦ JX)(x)
)

(f) = (JXx)(T
∗f) = f(Tx) =

(

(JY ◦ T )(x)
)

(f),

and hence T ∗∗ ◦JX = JY ◦T . If T : X → Y is an isomorphism then T−1T and TT−1

are the identity operators on X and Y , respectively, and taking duals we see that
T ∗ too is an isomorphism. Similarly T ∗∗ : X∗∗ → Y ∗∗ is an isomorphism. Thus JX
is surjective if and only if JY is surjective.
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Remark 6.6. (a) An alternative, but much less direct, way of seeing that the dual
operator of any isomorphism is an isomorphism is to appeal to Theorem 5.10.

(b) The first part of the above proof establishes a general fact, namely that T ∗∗◦JX =
JY ◦ T whenever X and Y are normed vector spaces and T ∈ B(X,Y ). Thus the
following diagram commutes:

X∗∗ Y ∗∗

X Y

T ∗∗

T

JX JY .
29

7 Convexity and smoothness of norms

Lect 8Let X be a normed vector space. If x, y ∈ SX then 1
2‖x + y‖ ≤ 1, and equality is

possible even when x 6= y. We say that X (or its norm) is strictly convex if whenever
x, y ∈ SX are distinct then 1

2‖x+ y‖ < 1. Let δX : [0, 2] → R be given by

δX(ε) = inf

{

1−
‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ ≥ ε

}

, 0 ≤ ε ≤ 2.

We call δX the modulus of convexity of X (or its norm). Note that 1
2‖x + y‖ ≤

1 − δX(ε) whenever x, y ∈ SX with ‖x − y‖ ≥ ε. We say that X (or its norm) is
uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. Note that any uniformly convex space
is strictly convex, and in finite-dimensional spaces the two notions are equivalent. If
X is a Hilbert space it follows from the parallelogram law that

δX(ε) ≥ 1−

(

1−
ε2

4

)1/2

, 0 ≤ ε ≤ 2,

and in particular every Hilbert space is uniformly convex. We will see on Problem
Sheet 3 that every uniformly convex Banach space is reflexive. However, strictly con-
vex Banach spaces are not in general reflexive. An equivalent definition of uniform
convexity is that whenever (xn) and (yn) are sequences in X such that

‖xn‖ → 1, ‖yn‖ → 1,
‖xn + yn‖

2
→ 1, n→ ∞,

we have ‖xn − yn‖ → 0 as n→ ∞.30

Theorem 7.1. Suppose that X is a uniformly convex Banach space and let f ∈
X∗ \ {0}. Then there exists a unique x ∈ SX such that f(x) = ‖f‖.

29This is what we mean by saying that the map JX is natural. Indeed, in the language of category
theory J provides a natural transformation from the identity functor to the functor ∗∗.

30As is often the case, it’ll be this sequential characterisation we want to use in proofs. To see
this claim, note that if uniform convexity fails, then there is some ǫ > 0 such that δX(ǫ) = 0. From
the definition of the infimum defining δX(ǫ)) we can find sequences (xn)

∞

n=1, (yn)
∞

n=1 in the sphere
with ‖xn − yn‖ ≥ ǫ, and ‖(xn + yn)/2‖ → 1. Conversely, if the sequential condition fails, then
passing to subsequences, there is ǫ > 0 and (xn)

∞

n=1, (yn)
∞

n=1 in X with ‖(xn + yn)/2‖ → 1, but
‖xn − yn‖ ≥ ǫ for all n. By considering x̃n = xn/‖xn‖ and ỹn = yn/‖yn‖, one gets δX(ǫ) = 0.
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Proof. Let xn ∈ SX , n ≥ 1, be such that f(xn) → ‖f‖ as n → ∞. We show that
the sequence (xn) is Cauchy. By completeness of X and continuity of f the existence
part then follows. Suppose not. Then there exist ε > 0 and increasing sequences of
integers (nk), (mk) such that ‖xnk

−xmk
‖ ≥ ε for all k ≥ 1. Let yk = 1

2(xnk
+xmk

),
k ≥ 1. Then ‖yk‖ ≤ 1 for all k ≥ 1 and f(yk) → ‖f‖ as k → ∞. It follows
that ‖yk‖ → 1 as k → ∞, so by uniform convexity ‖xnk

− xmk
‖ → 0 as k → ∞,

giving the required contradiction. For uniqueness, suppose that x, y ∈ SX are two
distinct vectors such that f(x) = f(y) = ‖f‖. By uniform convexity we must have
1
2‖x+ y‖ < 1 and hence

‖f‖ = f

(

x+ y

2

)

≤ ‖f‖
‖x+ y‖

2
< ‖f‖.

This contradiction completes the proof.

Remark 7.2. Note that for the uniqueness part strict convexity was sufficient. In
fact, it is not hard to show using Corollary 5.8 that X is strictly convex if and only if
every f ∈ X∗\{0} attains its norm in at most one point x ∈ SX . On the other hand,
for the existence part of the theorem reflexivity of X would have been sufficient, as
will become clear from Remark 10.2 below.

Thus in a uniformly convex space every functional attains its norm at a unique
vector in the unit sphere. We call the vector x above a norming vector for f , i.e.
x ∈ X norms f ∈ X∗ if ‖x‖ = 1 and f(x) = ‖f‖.

We now consider the dual question, interchanging the roles of X and X∗. Given
x0 ∈ X, Hahn-Banach (in the guise of Corollary 5.8) shows that for every x0 ∈
X there exists a norming functional, that is to say a functional f ∈ SX∗ such
that f(x0) = ‖x0‖.

31 In general, norming functionals are non-unique even for non-
zero vectors x0, but again we have a geometric condition on X which gives rise to
uniqueness.

We say that a real normed vector space X (or its norm) is smooth at x0 ∈ X if
the limit

lim
h→0

‖x0 + hx‖ − ‖x0‖

h

exists for all x ∈ X. We say that X (or its norm) is smooth if it is smooth at all
x0 ∈ X \ {0}, or equivalently all x0 ∈ SX . Note that no norm can be smooth at
0. Smoothness gives us uniqueness of norming functionals; we record a formally
stronger statement for use in the next statement.

Theorem 7.3. Let X be a real normed vector space such that for x0 ∈ X with
‖x0‖ = 1 and some p ≥ 1, the limit

lim
h→0

‖x0 + hx‖p − ‖x0‖
p

ph

exists for all x ∈ X. Then there is a unique norming functional f ∈ SX∗ with
f(x0) = ‖x0‖ given by

f(x) = lim
h→0

‖x0 + hx‖p − ‖x0‖
p

ph
.

31In contrast without strict convexity norming vectors may not exist. Can you give an example
using c0 and ℓ1?
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In particular if X is smooth, then all non-zero vectors have unique norming func-
tionals.

Proof. As observed above, existence of norming functionals follows from Corol-
lary 5.8.

Let f ∈ SX be a norming functional for x0 and fix x ∈ X. Note that as f is
linear, we can use L’Hopital’s rule to compute

lim
h→0

f(x0 + hx)p − f(x0)
p

ph
= f(x0)

p−1f(x) = f(x), 32 (7.1)

On the other hand as ‖f‖ ≤ 1 and f(x0) = ‖x0‖, we have

f(x0 + hx)p − f(x0) ≤ ‖x0 + hx‖p − ‖x0‖
p.

So for h > 0,
f(x0 + hx)p − f(x0)

p

ph
≤

‖x0 + hx‖p − ‖x0‖
p

ph

while for h > 0

f(x0 + hx)p − f(x0)
p

ph
≥

‖x0 + hx‖p − ‖x0‖
p

ph
.

Taking limits as h→ 0+ and as h→ 0− and using (7.1) gives that

f(x) =
f(x0 + hx)p − f(x0)

p

ph
≤

‖x0 + hx‖p − ‖x0‖
p

ph
.

For the final statement, note that uniqueness of norming functionals for a vector
is invariant under non-zero scalar multiplication.33

We will see on Problem Sheet 3 that uniqueness of norming functionals in fact
characterises smooth spaces.34 Moreover, if X is a real normed vector space such
that the norm of X∗ is strictly convex then the norm of X is smooth, and similarly
if the norm of X∗ is smooth then the norm of X is strictly convex.

8 Lebesgue spaces

Let (Ω,Σ, µ) be a measure space. For 1 ≤ p ≤ ∞ we denote by Lp(Ω,Σ, µ), or
simply Lp(Ω), the vector space of all (equivalence classes of) µ-measurable functions
x : Ω → F such that

∫

Ω
|x(t)|p dµ(t) <∞

32For this to come out nicely we need f(x0) = ‖x0‖ = 1 — which I made a hash of by forgotting
to include in the hypothesis in lectures. Sorry.

33I retain the direct proof for the case when X is smooth (it’s basically the same as above). Given
any norming functional f ∈ SX∗ and any x ∈ X we have

hf(x) = f(x0 + hx)− ‖x0‖ ≤ ‖x0 + hx‖ − ‖x0‖, h ∈ R.

Dividing by h 6= 0 and taking the limit as h → 0± now gives the result.
34so given the p > 1 version of Theorem 7.3, in fact the norm is smooth.
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if 1 ≤ p <∞ and ess supt∈Ω |x(t)| <∞ if p = ∞. If we endow Lp(Ω) with the norm

‖x‖p =

(
∫

Ω
|x(t)|p dµ(t)

)1/p

for 1 ≤ p <∞ and ‖x‖p = ess supt∈Ω |x(t)| if p = ∞, then Lp(Ω) is a Banach space.
For p = 2 it is a Hilbert space. If 1 ≤ p ≤ ∞ is given we will always take q be the
Hölder conjugate of p. We wish to show that for 1 ≤ p < ∞ the dual of Lp(Ω) is
isometrically isomorphic to Lq(Ω). We already know this for p = 2, and also when
Ω = N, Σ is the power set of N and µ is the counting measure, since in this case
Lp(Ω) = ℓp, 1 ≤ p ≤ ∞. A measure space (Ω,Σ, µ) is said to be σ-finite if there
exists a countable family {Ωn ∈ Σ : n ≥ 1} of measurable subsets of Ω such that
µ(Ωn) < ∞ for all n ≥ 1 and Ω =

⋃

n≥1Ωn. Note that by taking complements and
intersections we may assume that the sets Ωn, n ≥ 1, are mutually disjoint.

Proposition 8.1. Let 1 ≤ p ≤ ∞ and, if p = 1, assume that the measure space
(Ω,Σ, µ) is σ-finite. Then the map Φp : L

q(Ω) → Lp(Ω)∗ given by

(Φpy)(x) =

∫

Ω
x(t)y(t) dµ(t), x ∈ Lp(Ω), y ∈ Lq(Ω),

is a well-defined linear isometry.

Lect 9
Proof. It follows from Hölder’s inequality that the integral defining Φp exists and
that |(Φpy)(x)| ≤ ‖x‖p‖y‖q for x ∈ Lp(Ω), y ∈ Lq(Ω). Since Φpy is linear and
bounded with ‖Φpy‖ ≤ ‖y‖q for all y ∈ Lq(Ω), we see that Φp indeed maps into
Lp(Ω)∗. It is clear that Φp is a bounded linear operator with ‖Φp‖ ≤ 1. We need to
show that Φp is an isometry. Suppose first that 1 < p ≤ ∞ and let y ∈ Lq(Ω) be

such that ‖y‖q = 1. If x(t) = |y(t)|q−2y(t) for t ∈ Ω such that y(t) 6= 0 and x(t) = 0
otherwise, then x ∈ Lp(Ω) with ‖x‖p = 1 and (Φpy)(x) = ‖y‖qq = 1, so Φp is an
isometry. Suppose that p = 1 and let y ∈ L∞(Ω) with ‖y‖∞ = 1. Then for every
r ∈ [0, 1) the set Ω′

r = {t ∈ Ω : |y(t)| ≥ r} lies in Σ and is non-null. By σ-finiteness
there exists a measurable subset Ωr ⊆ Ω′

r such that 0 < µ(Ωr) <∞. Let

xr(t) =
y(t)

|y(t)|
µ(Ωr)

−1
1 Ωr

(t), t ∈ Ω.

Then xr ∈ L1(Ω) with ‖xr‖1 = 1 and (Φ1y)(xr) ≥ r, so Φ1 too is an isometry.

It remains to show that the operator Φp is surjective when 1 ≤ p < ∞ (this
is never the case for p = ∞ except when the space is finite-dimensional). As in
Proposition 8.1 the case p = 1 requires σ-finiteness of the measure space; see Problem
Sheet 3. We restrict ourselves here to the case 1 < p <∞.

Recall that a function φ : R → R is convex if

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y),

for 0 < λ < 1 and x, y ∈ R.35 It is strictly convex if equality only holds when x = y.
Recall too that differentiable convex functions have increasing derivative. For use

35This says that the area above the curve of φ is convex.
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in Theorem 8.3, if φ : R → R is convex and differentiable, then the function

ψ(s) =

{

φ(s)−φ(0)
s , s 6= 0

φ′(0), s = 0

is continuous36 and increasing. The example that matters to us is the function
φ(x) = |a + bx|p for a, b ∈ R and p > 1. This is strictly convex (for b 6= 0) and has
φ′(x) = pb|a+ bx|p−1 sgn(a+ bx).37

Theorem 8.2. Suppose that 1 < p <∞. Then the space Lp(Ω) is uniformly convex.

Proof. Let (xn) and (yn) be sequences in Lp(Ω) such that ‖xn‖p, ‖yn‖p,
1
2‖xn +

yn‖p → 1 as n → ∞. Let un = 1
2 |xn + yn| and vn = 1

2 |xn − yn|, n ≥ 1. Then
‖un‖p → 1 as n→ ∞ and we need to show that ‖vn‖p → 0 as n→ ∞. Now

‖un + vn‖
p
p + ‖un − vn‖

p
p =

∫

Ω

||xn + yn|+ |xn − yn||
p

2p
+

||xn + yn| − |xn − yn||
p

2p
dµ

=

∫

Ω
max

{

|xn|, |yn|
}p

+min
{

|xn|, |yn|
}p

dµ

= ‖xn‖
p
p + ‖yn‖

p
p → 2, n→ ∞.

By passing to subsequences if necessary we may assume that ‖un + vn‖p → a and
‖un − vn‖p → b as n→ ∞. Then ap + bp = 2 and

2 = 2 lim
n→∞

‖un‖p ≤ lim
n→∞

(

‖un + vn‖p + ‖un − vn‖p
)

= a+ b,

and hence
ap + bp

2
≤

(

a+ b

2

)p

.

By strict convexity of the function t 7→ tp it follows that a = b = 1. Since

∫

Ω

||xn + yn|+ |xn − yn||
p

2p
dµ ≥

∫

Ω

|xn + yn|
p + |xn − yn|

p

2p
dµ,

which is to say ‖un + vn‖
p
p ≥ ‖un‖

p
p + ‖vn‖

p
p, we obtain that

0 ≤ ‖vn‖
p
p ≤ ‖un + vn‖

p
p − ‖un‖

p
p → 0, n→ ∞.

Thus by a standard subsequence argument the space Lp(Ω) is uniformly convex.

From now on we will consider only the case F = R. However, the main result,
Theorem 8.4 below, remains true in the complex case and indeed it is possible to
deduce the complex case from the real case by decomposing into real and imaginary
parts not only the functionals in question but also the functions themselves.

Theorem 8.3. Suppose that 1 < p < ∞. If x0 ∈ Lp(Ω) with ‖x0‖p = 1 then
f = Φp(y0), where y0 = |x0|

p−1 sgnx0, is the unique element f ∈ Lp(Ω)∗ with
f(x0) = 1 and ‖f‖ = 1.

36by differentiability
37Here, for h ∈ R we let sgnh = ±1 according as h ≷ 0, and we let sgn 0 = 0.
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Proof. Certainly y0 ∈ Lq(Ω). By Theorem 7.3 we need to show that

(Φpy0)(x) = lim
h→0

‖x0 + hx‖pp − ‖x0‖
p
p

ph
, x ∈ Lp(Ω).

For t ∈ R, set

φt(h) =

{

|x0(t)−hx(t)|p−|x0(t)|p

ph , h 6= 0

y0(t)x(t), h = 0.

As φt is increasing and continuous, the monotone convergence theorem gives38

lim
h→0

‖x0 + hx‖pp − ‖x0‖
p
p

ph
= lim

h→0

∫

Ω
φt(h)dµ(t) =

∫

Ω
y0(t)x(t)dµ(t), (8.1)

as required.

Theorem 8.4. Suppose that 1 < p <∞. Then the map Φp : L
q(Ω) → Lp(Ω)∗ is an

isometric isomorphism. Furthermore, the space Lp(Ω) is reflexive.

Proof. Let f ∈ Lp(Ω)∗\{0}. By Theorem 8.2 the space Lp(Ω) is uniformly convex,
and hence by Theorem 7.1 there exists a (unique) function x0 ∈ Lp(Ω) such that
‖x0‖p = 1 and f(x0) = ‖f‖. It follows from Theorem 8.3 that f ∈ RanΦp, so Φp

is surjective and the first part follows from Proposition 8.1. In particular the map
(Φ−1

p )∗ ◦ Φq : L
p(Ω) → Lp(Ω)∗∗ is an isomorphism. If x ∈ Lp(Ω) and f ∈ Lp(Ω)∗,

then f = Φp(y) for some y ∈ Lq(Ω) and hence

(

(Φ−1
p )∗(Φqx)

)

(f) = (Φqx)(y) =

∫

Ω
xy dµ = (Φpy)(x) = f(x) = (JLp(Ω)x)(f).

Thus JLp(Ω) = (Φ−1
p )∗ ◦ Φq, so JLp(Ω) is surjective and hence Lp(Ω) is reflexive.

9 The weak and weak∗ topologies

Lect 10Given a vector space X and a subspace Y of the algebraic dual X ′, we denote by
σ(X,Y ) the coarsest topology on X for which all of the functionals f ∈ Y are
continuous. An equivalent definition of σ(X,Y ) is that it is the topology generated
by the basic open neighbourhoods

{

x ∈ X : |fk(x− x0)| < ε for 1 ≤ k ≤ n
}

,

where x0 ∈ X, n ∈ N, f1, . . . , fn ∈ Y and ε > 0. If X is a normed vector space,
the case Y = X∗ is of particular interest, and we call σ(X,X∗) the weak topology
on X. Another important special case is the so-called weak∗ topology σ(X∗, JX(X))
on the dual space X∗, which we also denote simply by σ(X∗, X). Note that a basic
weak∗-open neighbourhood has the form

{

f ∈ X∗ : |f(xk)− f0(xk)| < ε for 1 ≤ k ≤ n
}

,

where f0 ∈ X∗, n ∈ N, x1, . . . , xn ∈ X and ε > 0. It is straightforward to verify
that both the weak and the weak∗ topologies are Hausdorff. We certainly have

38consider separately the limit as h → 0+ and h → 0−.
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σ(X∗, X) ⊆ σ(X∗, X∗∗). Moreover, since any f ∈ X∗ is norm-continuous on X,
and likewise any element of JX(X) on X∗, the weak and weak∗ topologies are no
finer than the norm topologies on X and X∗, respectively. On finite-dimensional
spaces they coincide but, as we shall see in Proposition 9.6 below, in the infinite-
dimensional setting the weak and weak∗ topologies are always strictly coarser than
the norm topology. In fact, one of the main reasons for introducing the weak and
weak∗ topologies is that, unlike the norm topology, these coarser topologies give us
a rich supply of compact sets even in infinite-dimensional spaces.

LetX be a normed vector space. Given a sequence (xn) inX it is straightforward
to see that the sequence converges in the weak topology to a limit x ∈ X if and
only if f(xn) → f(x) as n → ∞ for all f ∈ X∗, which is precisely the notion of
weak convergence you may already know in the Hilbert space setting. Similarly,
a sequence (fn) in X∗ converges in the weak∗ topology to a limit f ∈ X∗ if and
only if fn(x) → f(x) as n → ∞ for all x ∈ X. It follows from the Uniform
Boundedness Principle that any weakly convergent sequence is norm-bounded, and
if X is complete the same is true of any weak∗-convergent sequence in X∗. We say
that X has the Schur property if every weakly convergent sequence in X is norm-
convergent. If X = c0 or X = ℓp for 1 < p < ∞ then we see by considering the
sequence (en) that X does not have the Schur property. The case p = 1 is different.

Theorem 9.1. The space ℓ1 has the Schur property.

Proof. This follows from a ‘gliding hump’ argument; see Problem Sheet 3.

Recall that the topology of any metric space can be described in terms of se-
quences. In general the weak and weak∗ topologies are not metrisable (see Problem
Sheet 3) but we have the following result.

Proposition 9.2. Let X be a normed vector space.

(a) If X is separable then the relative weak∗ topology on BX∗ is metrisable.

(b) If X∗ is separable then the relative weak topology on BX is metrisable.

Proof. For part (a) let {xn : n ≥ 1} be a dense subset of BX and consider the map

d(f, g) =
∞
∑

n=1

|f(xn)− g(xn)|

2n
, f, g ∈ BX∗ .

The result in part (b) can be approached analogously or deduced from part (a). The
details are left as an exercise; see Problem Sheet 3.

Remark 9.3. The converse statements in Proposition 9.2 are also true; see Re-
mark 9.10 below for a proof in the case of part (a).

Given a linear map T : X → Y between two vector spaces X and Y , the algebraic
dual operator T ′ : Y ′ → X ′ of T is given by (T ′f)(x) = f(Tx) for f ∈ Y ′ and x ∈ X.
In particular, if X, Y are normed vector spaces and f ∈ Y ∗ then T ′f = T ∗f .

Proposition 9.4. Let X and Z be vector spaces and suppose that Y is a subspace
of X ′ and W is a subspace of Z ′.

(a) A functional f ∈ X ′ is σ(X,Y )-continuous if and only if f ∈ Y .
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(b) A linear map T : X → Z is σ(X,Y )-to-σ(Z,W )-continuous if and only if
T ′(W ) ⊆ Y .

Proof. (a) If f ∈ Y then f is σ(X,Y )-continuous by definition of σ(X,Y ). Suppose
that f ∈ X ′ is σ(X,Y )-continuous and let U = {x ∈ X : |f(x)| < 1}. Then U is a
σ(X,Y )-open neighbourhood of zero so there exist n ∈ N, f1, . . . , fn ∈ Y and ε > 0
such that the basic σ(X,Y )-open set V = {x ∈ X : |fk(x)| < ε for 1 ≤ k ≤ n} is
contained in U . Since

⋂n
k=1Ker fk ⊆ V ⊆ U we have by linearity that

n
⋂

k=1

Ker fk ⊆ Ker f,

so f ∈ span{f1, . . . , fn} ⊆ Y by a result on Problem Sheet 1.

(b) It follows from the definition of σ(Z,W ) that a linear map T : X → Z is σ(X,Y )-
to-σ(Z,W )-continuous if and only if f ◦ T : X → F is σ(X,Y )-continuous for all
f ∈W , which by part (a) is equivalent to having T ′(W ) ⊆ Y , as required.

Corollary 9.5. Let X be a normed vector space. Then σ(X∗, X) = σ(X∗, X∗∗) if
and only if X is reflexive.

Recall that a subspace Y of a vector space X is said to have finite codimension if
dimX/Y <∞. Typical examples of finite-codimensional subspaces are annihilators
of finite-dimensional subspaces. Indeed, if Y is a finite-dimensional subspace of a
normed vector space X then by Corollary 5.12 we have X∗/Y ◦ ∼= Y ∗ and hence
dimX∗/Y ◦ < ∞. Similarly, if Z is a finite-dimensional subspace of X∗, then by a
result on Problem Sheet 1 we have (Z◦)

◦ = Z and Corollary 5.12 gives (X/Z◦)
∗ ∼=

Z. In particular, X/Z◦ must be finite-dimensional. The proof of Proposition 9.4
shows that any basic weakly open neighbourhood of the origin contains a finite-
codimensional subspace, and an analogous argument works for the weak∗ topology.

Proposition 9.6. Let X be an infinite-dimensional normed vector space. Then
SX is not weakly closed and SX∗ is not weak∗-closed. In particular, σ(X,X∗) and
σ(X∗, X) are strictly coarser than the respective norm topologies.

Proof. We will show that 0 lies in the weak closure of SX . Indeed, as in the proof
of Proposition 9.4 we see that any weakly open neighbourhood U of 0 contains a
finite-codimensional subspace Y of the form Y =

⋂n
k=1Ker fk for some f1, . . . , fn ∈

X∗. Since X is infinite-dimensional but dimX/Y < ∞, Y must be non-trivial. In
particular, Y ∩ SX = SY is non-empty and hence so is U ∩ SX , as required. The
argument for SX∗ is completely analogous, and the final statement is then clear.

Given a family {Xα : α ∈ A} of topological spaces we may view the product space
X =

∏

α∈AXα as the space of all functions x : A →
⋃

α∈AXα such that x(α) ∈ Xα

for all α ∈ A. We may endow X with the product topology, which is the coarsest
topology for which all of the maps pα : X → Xα, α ∈ A, are continuous, where
pα(x) = x(α) for α ∈ A, x ∈ X. It is not hard to see that if Xα is Hausdorff for each
α ∈ A then so is the product space with the product topology. The corresponding
statement for compactness is far less obvious. The following result is proved in
C1.3 Analytic Topology; it is equivalent to the Axiom of Choice.
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Theorem 9.7 (Tychonoff). Let {Xα : α ∈ A} be a family of topological spaces
and suppose that Xα is compact for each α ∈ A. Then the product space endowed
with the product topology is also compact.

Lect 11Theorem 9.8 (Banach-Alaoglu). Let X be a normed vector space. Then BX∗ is
weak∗-compact.

Proof. For x ∈ X let Dx = {λ ∈ F : |λ| ≤ ‖x‖}, noting that each Dx is compact,
and let K =

∏

x∈X Dx be endowed with the product topology. Then BX∗ ⊆ K
and the topology on BX∗ induced by the product topology is precisely the weak∗

topology. Note that K is compact in the product topology by Tychonoff’s Theorem.
Hence in order to prove that BX∗ is weak∗-compact it suffices to show that it is closed
in K. Now K is simply the set of all functions f : X → F such that |f(x)| ≤ ‖x‖ for
all x ∈ X, and BX∗ consists precisely of those elements of K which are linear. For
x, y ∈ X and λ ∈ F let Φx,y,λ : K → F be the map defined by

Φx,y,λ(f) = f(x+ λy)− f(x)− λf(y), f ∈ K,

and note that BX∗ =
⋂
{

Φ−1
x,y,λ({0}) : x, y ∈ X, λ ∈ F

}

. It follows from the definition
of the product topology that the map Φx,y,λ is continuous on K for every x, y ∈ X
and λ ∈ F, so BX∗ is closed in K, as required.

Given a compact topological space Ω we write C(Ω) for the Banach space of
scalar-valued continuous functions, endowed with the supremum norm.

Corollary 9.9. Given any normed vector space X there exists a compact Hausdorff
space Ω such that C(Ω) contains a subspace which is isometrically isomorphic to X.

Proof. We may take Ω = BX∗ with the subspace topology induced by the weak∗

topology on X∗. Then Ω is Hausdorff and, by the Banach-Alaoglu Theorem, it is
compact. Moreover, the map T : X → C(Ω) given by (Tx)(f) = f(x) for x ∈ X,
f ∈ Ω, is a well-defined linear operator, and by Corollary 5.8 it is an isometry.

Remark 9.10. By Proposition 9.2(a) we may take Ω to be a compact metric space
if X is separable, and in fact, by the so-called Banach-Mazur Theorem, we may even
take Ω = [0, 1] in this case. Since C(Ω) is separable whenever Ω is a compact metric
space we see that Corollary 9.9 implies the converse of Proposition 9.2(a).

Theorem 9.11 (Hahn-Banach Separation Theorem, weak∗ version). Let X
be a normed vector space and suppose that C is a non-empty convex subset of X∗

and that f0 ∈ X∗ \ C.

(a) If C is weak∗-open, then there exists x ∈ X such that

Re f0(x) > Re f(x), f ∈ C.

(b) If C is weak∗-closed, then there exists x ∈ X such that

Re f0(x) > sup{Re f(x) : f ∈ C}.
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Proof. (a) Since C is in particular open in the norm topology, Theorem 5.9 implies
the existence of a φ ∈ X∗∗ such that Reφ(f0) > Reφ(f) for all f ∈ C. Let g0 ∈ C.
Then there exists a basic weak∗-open neighbourhood U of zero such that g0+U ⊆ C.
Suppose that

U =
{

f ∈ X∗ : |f(xk)| < ε for 1 ≤ k ≤ n
}

for some n ∈ N, x1, . . . , xn ∈ X and ε > 0. Then in particular

Reφ(f0) > Reφ(g0) + Reφ(f), f ∈ U.

If Y =
⋂n

k=1Ker JX(xk), then Y ⊆ U and because Y is a vector space we must have
Y ⊆ Kerφ. It follows that φ ∈ span{JX(x1), . . . , JX(xn)} ⊆ JX(X), as required.

(b) Since C is in particular closed in the norm topology, Theorem 5.9 implies the
existence of a φ ∈ X∗∗ such that Reφ(f0) > supf∈C Reφ(f). Choosing U to be
a basic weak∗-open neighbourhood of zero such that f0 6∈ C + U , it follows as in
part (a) that φ ∈ JX(X).

Corollary 9.12. Let X be a normed vector space and let Y be a subspace of X∗.
Then (Y◦)

◦ coincides with the weak∗ closure of Y .

Proof. Let C denote the weak∗ closure of Y , noting that C is a vector space and
hence convex. It is clear that Y ⊆ (Y◦)

◦ and that

(Y◦)
◦ =

⋂

{

Ker JX(x) : x ∈ Y◦
}

is weak∗-closed, so C ⊆ (Y◦)
◦. Suppose that f0 ∈ X∗ \ C. By Theorem 9.11 there

exists x ∈ X such that Re f0(x) > supf∈C Re f(x). Since C is a vector space this in
particular implies that f(x) = 0 for all f ∈ Y and hence x ∈ Y◦. Since f0(x) 6= 0 we
deduce that f0 6∈ (Y◦)

◦, so (Y◦)
◦ ⊆ C, as required.

Theorem 9.13 (Goldstine). Let X be a normed vector space. Then JX(BX) is
weak∗-dense in BX∗∗ .

Proof. Let C be the weak∗ closure of JX(BX), noting that C is convex. By
the Banach-Alaoglu Theorem BX∗∗ is weak∗-compact. Since the weak∗ topology
is Hausdorff the set BX∗∗ is weak∗-closed, and hence C ⊆ BX∗∗ . Suppose that
φ ∈ X∗∗ \ C. By Theorem 9.11 there exists f ∈ X∗ such that

Reφ(f) > sup{Reψ(f) : ψ ∈ C} ≥ sup{Re f(x) : x ∈ BX} = ‖Re f‖ = ‖f‖.

It follows that ‖φ‖ > 1, so BX∗∗ ⊆ C and the result follows.

Theorem 9.14. Let X be a normed vector space. Then X is reflexive if and only
if BX is weakly compact.

Proof. Consider the usual map JX : X → X∗∗ given by (JXx)(f) = f(x) for
f ∈ X∗, x ∈ X, and let Y = JX(X). If U is a basic weakly open subset of X
then JX(U) = V ∩ Y for a basic weak∗-open subset V of X∗∗, while if V is a basic
weak∗-open subset of X∗∗ then J−1

X (V ∩ Y ) is a basic weakly open subset of X. It
follows that JX is a homeomorphic embedding from X with the weak topology onto
Y with the subspace topology induced by the weak∗ topology on X∗∗.
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Suppose first that X is reflexive. Then JX(BX) = BX∗∗ and BX = J−1
X (BX∗∗).

Since BX∗∗ is weak∗-compact by the Banach-Alaoglu Theorem, we see that BX

is weakly compact. Conversely, if BX is weakly compact then JX(BX) is weak∗-
compact and hence weak∗-closed in X∗∗, because the weak∗ topology is Hausdorff.
By Goldstine’s Theorem JX(BX) is weak∗-dense inBX∗∗ and hence JX(BX) = BX∗∗ ,
so JX is surjective and consequently X is reflexive.

10 Compactness in normed vector spaces

Let (X, d) be a metric space. Given a subsetM of X we define the diameter ofM as
diamM = sup{d(x, y) : x, y ∈M}. We say that a subset M of X is totally bounded
(or precompact) if for every ε > 0 there exists a finite cover of M by sets of diameter
at most ε. This is equivalent to the existence, for every ε > 0, of a finite set F ⊆M
such that dist(x, F ) < ε for all x ∈ M , which is to say that M ⊆

⋃

x∈F B
◦
X(x, ε).

Such a set F is said to be an ε-net forM . The setM is said to be relatively compact
if its closure in X is compact. Any relatively compact subset is totally bounded and
it is easy to see that M is totally bounded or relatively compact if and only if its
closure is. We say that X is sequentially compact if every sequence with terms in X
has a subsequence which converges to an element of X.

Theorem 10.1. Let (X, d) be a metric space. Then the following are equivalent:

(a) X is compact;

(b) X is complete and totally bounded;

(c) X is sequentially compact.

Proof. It is a standard fact in point-set topology that a metric space is compact
if and only if it is sequentially compact and that any compact space is complete.
Moreover, any compact space is totally bounded. A standard diagonal selection
argument shows that in a totally bounded set any sequence has a Cauchy subse-
quence, and in fact the converse holds as well. Hence if a space is totally bounded
and complete then it must be sequentially compact.

Remark 10.2. Suppose that X is a normed vector space such that X∗ is separable.
Then BX with the relative weak topology is a metric space by Proposition 9.2, so by
Theorem 10.1 it is compact if and only if it is sequentially compact. It follows from
Theorem 9.14 that X is reflexive if and only if every bounded sequence has a weakly
convergent subsequence. In fact, this statement is true even without the assumption
that X∗ is separable, and this follows from the so-called Eberlein-Šmulian Theorem,
which states that weak compactness is equivalent to weak sequential compactness
for subsets of arbitrary normed vector spaces. The Eberlein-Šmulian Theorem is
not part of this course, but note that the proof of one implication relies a diagonal
selection argument similar to the one commonly used to show that every bounded
sequence in a Hilbert space has a weakly convergent subsequence.

Theorem 10.1 has the following important consequence.

Corollary 10.3. Let (X, d) be a complete metric space and let M ⊆ X. Then M is
relatively compact if and only if it is totally bounded.
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Lect 12Suppose now that X is a normed vector space. If X is finite-dimensional and
M ⊆ X then by the Heine-Borel Theorem M is compact if and only if it is closed
and bounded, and hence M is totally bounded if and only if it is bounded.

Proposition 10.4. Let X be a normed vector space and let M ⊆ X. Then M
is totally bounded if and only if M is bounded and for every ε > 0 there exists a
finite-dimensional subspace Y of X such that dist(x, Y ) < ε for all x ∈M .

Proof. Suppose first that M is totally bounded. Then M is bounded and, given
ε > 0, we may let F ⊆ M be a finite ε-net for M . Letting Y = spanF we have
dimY ≤ |F | and dist(x, Y ) < ε for all x ∈M , as required. Conversely, suppose that
M is bounded and, given ε > 0, let Y be a finite-dimensional subspace Y of X such
that dist(x, Y ) < ε/2 for all x ∈ M . Let r > 0 be such that M ⊆ BX(r) and note
that the set K = BY (r + ε/2) is compact by the Heine-Borel Theorem. Let F be a
finite ε

2 -net for K. Then given x ∈ M we may find y ∈ Y such that ‖x− y‖ < ε/2.
Since y ∈ K there exists z ∈ F such that ‖y − z‖ < ε/2 and hence ‖x − z‖ < ε.
Thus M is totally bounded.

Lemma 10.5 (F. Riesz). Let X be a normed vector space and suppose that Y is a
proper closed subspace of X. Then for any δ ∈ (0, 1) there exists x ∈ SX such that
dist(x, Y ) ≥ 1− δ.

Proof. By Corollary 5.8 there exists f ∈ SX∗ ∩ Y ◦. Given δ ∈ (0, 1) we may find
x ∈ SX such that |f(x)| > 1− δ, and then for y ∈ Y we have

‖x− y‖ ≥ |f(x− y)| = |f(x)| > 1− δ.

Thus dist(x, Y ) ≥ 1− δ, as required.

Remark 10.6. The conclusion of Lemma 10.5 in general becomes false if we allow
δ = 0. However, using Theorem 7.1 we may show the result remains valid even
with δ = 0 if X is uniformly convex, and by a simple application of the Heine-Borel
Theorem the same is true when Y is finite-dimensional.

Corollary 10.7. Let X be a normed vector space. Then BX is totally bounded if
and only if X is finite-dimensional.

Proof. If BX is totally bounded and ε ∈ (0, 1) then by Proposition 10.4 there
exists a finite-dimensional subspace Y of X such that dist(x, Y ) < ε for all x ∈ BX .
If Y ( X then by Riesz’s Lemma applied with δ = 1 − ε there exists x ∈ BX such
that dist(x, Y ) ≥ ε, a contradiction. Hence Y = X, so X is finite-dimensional. Con-
versely, if X is finite-dimensional then by the Heine-Borel Theorem BX is compact
and in particular totally bounded.

We now turn to characterisations of totally bounded subsets, or equivalently
of relatively compact subsets, in two classical Banach spaces. Given a compact
topological space Ω and a subset M of C(Ω), we say that M is equicontinuous if for
every ε > 0 and t ∈ Ω there exists an open neighbourhood U of t in Ω such that
|x(s)− x(t)| < ε for all x ∈M and all s ∈ U .
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Theorem 10.8 (Arzelà-Ascoli). Let Ω be a compact topological space and suppose
that M is a subset of C(Ω). Then M is relatively compact if and only if it is bounded
and equicontinuous.

Proof. Suppose that M is relatively compact. Then M is totally bounded, in
particular bounded, and given ε > 0 we may find a finite ε

3 -net F ⊆ M for M .
Suppose that t ∈ Ω. For each x ∈ F there exists an open neighbourhood Ux of
t in Ω such that |x(s) − x(t)| < ε/3 for all s ∈ Ux. Let U =

⋂

x∈F Ux, which is
another open neighbourhood of t in Ω. Given x ∈ M we may find y ∈ F such that
‖x− y‖∞ < ε/3 and, for s ∈ U , we have

|x(s)− x(t)| ≤ |x(s)− y(s)|+ |y(s)− y(t)|+ |y(t)− x(t)| < ε.

Thus M is equicontinuous.
Conversely, suppose that M is bounded and equicontinuous, and let ε > 0.

Since M is equicontinuous there exists, for each t ∈ Ω, an open neighbourhood
Ut of t in Ω such that |x(s) − x(t)| < ε/3 for all x ∈ M and all s ∈ Ut. Then
{Ut : t ∈ Ω} is an open cover of Ω. By compactness of Ω we may select a finite
subcover {Utk : 1 ≤ k ≤ n}. Let T : C(Ω) → (Fn, ‖ · ‖∞) be given by

Tx =
(

x(t1), . . . , x(tn)
)

, x ∈ C(Ω),

and let S = T (M). Then by boundedness ofM the set S is a bounded, and therefore
totally bounded, subset of (Fn, ‖ · ‖∞). Let F ⊆ M be a finite set such that T (F )
is an ε

3 -net for S and suppose that x ∈ M . Then there exists y ∈ F such that
|x(tk) − y(tk)| < ε/3 for 1 ≤ k ≤ n. Given t ∈ Ω we have t ∈ Utk for some
k ∈ {1, . . . , n} and hence

|x(t)− y(t)| ≤ |x(t)− x(tk)|+ |x(tk)− y(tk)|+ |y(tk)− y(t)| < ε.

Thus M is totally bounded and hence, by Corollary 10.3, relatively compact.

Example 10.9. Given k ∈ L1(0, 1), consider the the set

M =

{

t 7→

∫ t

0
k(s)x(s) ds : x ∈ C([0, 1]), ‖x‖∞ ≤ 1

}

.

It can be shown that for every ε > 0 there exists δ > 0 such that
∫

I |k(s)| ds < ε for all
intervals I ⊆ [0, 1] of length less than δ. HenceM is a bounded equicontinuous subset
of C([0, 1]). By the Arzelà-Ascoli Theorem M is relatively compact in C([0, 1]).

Theorem 10.10 (Kolmogorov-Riesz-Fréchet). Let 1 ≤ p < ∞ and n ≥ 1, and
suppose thatM ⊆ Lp(Rn). ThenM is relatively compact if and only ifM is bounded,

∫

|t|≥R
|x(t)|p dt→ 0 as R→ ∞ and

∫

Rn

|x(s+ t)− x(t)|p dt→ 0 as |s| → 0,

uniformly over x ∈M .

Proof. The proof uses the Arzelà-Ascoli Theorem together with a mollification
argument. We omit the details; see for instance Brezis, Section 4.5.
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11 Compact operators

Given two normed vector spaces X, Y and a linear operator T : X → Y , we say
that T is a compact operator if the set T (BX) is relatively compact in Y . Thus T
is compact if and only if for every bounded sequence (xn) in X the sequence (Txn)
in Y has a convergent subsequence. We write K(X,Y ) for the set of compact linear
operators T : X → Y and we let K(X) = K(X,X). Notice that if T is compact
then the closure of T (BX) is in particular bounded, so T is bounded and hence
K(X,Y ) ⊆ B(X,Y ).

Example 11.1. (a) If X, Y are normed vector spaces and T ∈ B(X,Y ) has finite
rank, which is to say that dimRanT < ∞, then T ∈ K(X,Y ). Indeed, T (BX) is a
bounded and hence relatively compact subset of the finite-dimensional space RanT .

(b) If X is a normed vector space then by Corollary 10.7 the identity operator on
X is compact if and only if X is finite-dimensional.

(c) Let X = C([0, 1]) and k ∈ L1(0, 1). Then by Example 10.9 the integral operator

(Tx)(t) =

∫ t

0
k(s)x(s) ds, x ∈ X, 0 ≤ t ≤ 1,

is compact. Integral operators are important in the theory of differential equations.

Lect 13Proposition 11.2. Let X and Y be normed vector spaces.

(a) The set K(X,Y ) is a subspace of B(X,Y ), and it is closed if Y is complete.

(b) If T ∈ K(X,Y ) and R ∈ B(Y, Z), S ∈ B(W,X), where W and Z are normed
vector spaces, then RTS ∈ K(W,Z).

Proof. (a) Suppose that S, T ∈ K(X,Y ) and that λ ∈ F. Let L and M denote the
closures or S(BX) and T (BX), respectively. Then L and M are compact and so is
the set K = L + |λ|M . Since (S + λT )(BX) ⊆ K, we see that S + λT ∈ K(X,Y ),
so K(X,Y ) is a subspace of B(X,Y ). It remains to show that it is closed if Y is
complete. Suppose that T ∈ B(X,Y ) lies in the closure of K(X,Y ), and let ε > 0.
Then there exists S ∈ K(X,Y ) such that ‖S − T‖ < ε/3. Since S is compact there
exists a finite set F ⊆ BX such that S(F ) is an ε

3 -net for S(BX). Given x ∈ BX we
may find y ∈ F such that ‖Sx− Sy‖ < ε/3, and hence

‖Tx− Ty‖ ≤ ‖T − S‖‖x‖+ ‖Sx− Sy‖+ ‖S − T‖‖y‖ < ε.

It follows that T (BX) is totally bounded, so by completeness of Y and Corollary 10.3
it is relatively compact and hence T ∈ K(X,Y ). Thus K(X,Y ) is closed in B(X,Y ).

(b) Let r = ‖S‖ and B = BX(r), and note that S(BW ) ⊆ B. Letting K denote
the closure of T (B) we see that K is a compact set containing TS(BW ), and hence
RTS(BW ) is contained in the compact set R(K), so RTS ∈ K(X,Y ).

Corollary 11.3. Let X be a normed vector space and Y a Banach space, and let
T ∈ B(X,Y ). Suppose there exist finite-rank operators Tn ∈ B(X,Y ), n ≥ 1, such
that ‖Tn − T‖ → 0 as n→ ∞. Then T ∈ K(X,Y ).
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Remark 11.4. P. Enflo (1973) gave an example of a separable reflexive Banach
space X for which there exists a compact operator T ∈ K(X) such that T cannot
be approximated by finite-rank operators. However, we will see on Problem Sheet 4
that the converse of Corollary 11.3 does hold on many spaces.

Lemma 11.5. Let X be a normed vector space and let Y be a closed finite-codimen-
sional subspace of X. Then for every ε > 0 there exists a finite-dimensional subspace
Z of X such that every x ∈ X can be expressed as x = y+ z with y ∈ Y , z ∈ Z and
‖z‖ ≤ (1 + ε)‖x‖.

Proof. Let 0 < δ ≤ ε(2 + ε)−1. Since dimX/Y < ∞ the open unit ball B◦
X/Y is

totally bounded. Let π : X → X/Y be the canonical quotient map. Then π(B◦
X) =

B◦
X/Y and hence there exist z1, . . . , zn ∈ B◦

X such that {π(zk) : 1 ≤ k ≤ n} is
a δ-net for B◦

X/Y . Let Z = span{zk : 1 ≤ k ≤ n}. Then Z is complete and
Lemma 4.9 applied to the restricted operator π|Z : Z → X/Y shows that B◦

X/Y ⊆
π(B◦

Z((1 − δ)−1)). Let x ∈ X. If x = 0 we may take y = z = 0, so we assume that
x 6= 0. Then the vector x0 = ‖x‖−1(1 + δ)−1x satisfies ‖x0‖ < 1, so there exists
z0 ∈ B◦

Z((1− δ)−1) such that π(z0) = π(x0). Let z = (1 + δ)‖x‖z0. Then x = y + z
for some y ∈ Y and by our choice of δ we have ‖z‖ < (1 + ε)‖x‖.

Theorem 11.6. Let X and Y be normed vector spaces and suppose that T ∈
B(X,Y ). Consider the following statements:

(a) T is a compact operator;

(b) For every ε > 0 there exists a finite-dimensional subspace Z of Y such that
‖πZ ◦ T‖ ≤ ε, where πZ : Y → Y/Z denotes the canonical quotient operator;

(c) For every ε > 0 there exists a closed finite-codimensional subspace W of X
such that ‖T |W ‖ ≤ ε.

Then (a) =⇒ (b) =⇒ (c), and if Y is complete then (c) =⇒ (a).

Proof. If T is compact, then T (BX) is totally bounded, so by Proposition 10.4
there exists, for every ε > 0, a finite-dimensional subspace Z of Y such that
‖πZ(Tx)‖ = dist(Tx, Z) < ε for all x ∈ BX , and hence ‖πZ ◦T‖ ≤ ε, so (a) =⇒ (b).

If (b) holds and ε > 0, let Z be a finite-dimensional subspace of Y such that ‖πZ ◦
T‖ ≤ ε/3. Then Z◦ is closed and has finite codimension in Y ∗, so by Lemma 11.5
there exists a finite-dimensional subspace V of Y ∗ such that every f ∈ Y ∗ can be
expressed as f = g + h with g ∈ Z◦, h ∈ V and ‖h‖ ≤ 2‖f‖. It follows that
‖g‖ ≤ 3‖f‖. Let W = T ∗(V )◦, noting that W is closed and has finite codimension
in X. Suppose that x ∈ W and f ∈ BY ∗ . We may write f = g + h as above, and
then for any z ∈ Z we have

|f(Tx)| = |T ∗(g + h)(x)| = |g(Tx)| = |g(Tx+ z)| ≤ 3‖Tx+ z‖.

Taking the infimum over all z ∈ Z we see using Corollary 5.8 that ‖Tx‖ ≤ ε‖x‖,
and hence ‖T |W ‖ ≤ ε. Thus (b) =⇒ (c).

Finally, suppose that (c) holds and assume that Y is complete. Given ε > 0,
let W be a closed finite-codimensional subspace of X such that ‖T |W ‖ < ε/3. By
Lemma 11.5 there exists a finite-dimensional subspace V of X such that every x ∈ X
can be expressed as x = v + w with v ∈ V , w ∈ W and ‖v‖ ≤ 2‖x‖. It follows that
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‖w‖ ≤ 3‖x‖. Let Z = T (V ), noting that Z is a finite-dimensional subspace of Y .
Given x ∈ BX , we may write x = v + w as above, and then

dist(Tx, Z) ≤ ‖Tx− Tv‖ ≤ ‖T |W ‖‖w‖ < ε.

Hence the bounded set T (BX) is totally bounded by Proposition 10.4. By complete-
ness of Y and Corollary 10.3 we see that T is a compact operator, so (c) =⇒ (a).

Theorem 11.7 (Schauder). Let X and Y be normed vector spaces, and suppose
that T ∈ B(X,Y ). If T is compact then so is T ∗, and if Y is complete then the
converse also holds.

Proof. Suppose that T is compact and let ε > 0. By Theorem 11.6 there exists
a finite-dimensional subspace Z of Y such that ‖πZ ◦ T‖ ≤ ε. Then W = Z◦ is a
closed finite-codimensional subspace of Y ∗. Let f ∈W , x ∈ X and z ∈ Z. Then

|T ∗f(x)| = |f(Tx+ z)| ≤ ‖f‖‖Tx+ z‖,

and taking the infimum over all z ∈ Z we obtain that |T ∗f(x)| ≤ ε‖f‖‖x‖. Hence
‖T ∗|W ‖ ≤ ε, so by completeness of X∗ and Theorem 11.6 we see that T ∗ is compact.

Conversely, suppose that T ∗ is compact and that Y is complete. Let ε > 0. By
Theorem 11.6 there exists a finite-dimensional subspace Z of X∗ such that ‖πZ ◦
T ∗‖ ≤ ε. Then W = Z◦ is closed and of finite codimension in X. Let x ∈ W ,
f ∈ BY ∗ and g ∈ Z. Then

|f(Tx)| = |(T ∗f + g)(x)| ≤ ‖T ∗f + g‖‖x‖,

and taking the infimum over all g ∈ Z gives |f(Tx)| ≤ ε‖x‖. It follows from
Corollary 5.8 that ‖T |W ‖ ≤ ε and hence T is compact by Theorem 11.6.

Remark 11.8. An alternative way to prove the converse statement is to observe
that if T ∗ is compact then by the first part the operator T ∗∗ : X∗∗ → Y ∗∗ is again
compact. Now T ∗∗ ◦ JX = JY ◦ T , so JY (T (BX)) ⊆ T ∗∗(BX∗∗), which is totally
bounded. Since JY is an isometry it follows that T (BX) is totally bounded and
hence, by completeness of Y and Corollary 10.3, T (BX) is relatively compact.

12 Fredholm theory

Lect 14Let X and Y be Banach spaces and suppose that T ∈ B(X,Y ). One is often
interested in finding solutions x ∈ X of an equation of the form

Tx = y, (12.1)

where y ∈ Y is a given vector. The problem has a solution if and only if y ∈ RanT ,
and we know from Remark 5.11 that the closure of RanT coincides with (KerT ∗)◦.
In particular, if RanT is closed then we have a criterion for our problem to have a
solution, namely that f(y) = 0 for all f ∈ KerT ∗.

Theorem 12.1 (Closed Range Theorem). Let X and Y be Banach spaces and
suppose that T ∈ B(X,Y ). Then RanT is closed if and only if RanT ∗ is closed.

37



Proof. Define the operators Q : X → RanT and S : RanT → Y by Qx = Tx,
x ∈ X, and Sy = y, y ∈ RanT , so that T = S ◦ Q. If RanT is closed, then
by the Open Mapping Theorem Q is a quotient operator. Conversely, if Q is a
quotient operator then RanT is isomorphic to the Banach space X/KerT , so RanT
is complete and therefore closed. Thus RanT is closed if and only if Q is a quotient
operator. By Theorem 5.10 the latter is equivalent to Q∗ being an isomorphic
embedding. But KerQ∗ = (RanQ)◦ = {0}, so Q∗ maps bijectively onto its range. If
Q∗ is an isomorphic embedding, then RanQ∗ is closed, while if RanQ∗ is closed then
by the Inverse Mapping Theorem Q∗ is an isomorphic embedding. Thus Q∗ is an
isomorphic embedding if and only if RanQ∗ is closed, and therefore RanT is closed if
and only if RanQ∗ is closed. Note that the operator S is an isomorphic embedding,
so by Theorem 5.10 its dual S∗ is a quotient operator and in particular surjective.
Since T ∗ = Q∗ ◦ S∗ we see that RanT ∗ = RanQ∗, so the result is proved.

Remark 12.2. It follows from a result on Problem Sheet 3 that RanT is norm-
closed if and only if it is weakly closed. The above proof shows that if RanT
is closed then Q is a quotient operator, and hence by Remark 5.11 we see that
RanQ∗ = (KerQ)◦. But RanQ∗ = RanT ∗ and KerQ = KerT , so we obtain
a further equivalent condition for closedness of RanT and RanT ∗, namely that
RanT ∗ = (KerT )◦. Thus by Corollary 9.12 we see that RanT ∗ is norm-closed if
and only if it is weak∗-closed.

If X and Y are Banach spaces and T ∈ B(X,Y ) we say that T is a Fredholm
operator if KerT is finite-dimensional and RanT has finite codimension in Y . We
know from Problem Sheet 2 that any such operator must have closed range. If T is
Fredholm we define the index of T as

indT = dimKerT − dimY/RanT.

Example 12.3. (a) Any invertible operator between two Banach spaces is Fred-
holm with index zero.

(b) Let X = ℓ1 and define the left-shift T ∈ B(X) by Tx = (x2, x3 . . . ) for
x = (xn) ∈ X. Then T k for each integer k ≥ 0 is Fredholm with indT k = k.

(c) If X and Y are finite-dimensional normed vector spaces, then every linear
operator T : X → Y is Fredholm and moreover, by the Rank-Nullity Theorem,

indT = dimKerT − dimY + dimRanT = dimX − dimY.

Proposition 12.4. Let X and Y be Banach spaces and suppose that T ∈ B(X,Y ).
Then T is Fredholm if and only if T ∗ is Fredholm, and if both operators are Fredholm
then indT + indT ∗ = 0.

Proof. Exercise; see Problem Sheet 4.

Theorem 12.5. Let X and Y be Banach spaces and suppose that T ∈ B(X,Y ). If
T is Fredholm then there exist a closed finite-codimensional subspace V of X and a
finite-dimensional subspace W of Y such that X = KerT ⊕ V and Y = RanT ⊕W
topologically, and moreover T |V maps V isomorphically onto RanT . Conversely, if
there exist closed finite-codimensional subspaces V of X and Z of Y such that T |V
maps V isomorphically onto Z, then T is Fredholm and

indT = dimX/V − dimY/Z.
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Proof. Suppose that T is Fredholm. The existence of V follows from a result on
Problem Sheet 2 and the existence of W is also clear. Then T |V maps V bijectively
onto the Banach space RanT , so by the Inverse Mapping Theorem it does so iso-
morphically. Suppose now that V and Z are as described. Then KerT ∩ V = {0},
so KerT is finite-dimensional, and Z ⊆ RanT , so Y/RanT is finite-dimensional.
Hence T is Fredholm. We may find a finite-dimensional subspace U of X such that
X = KerT ⊕ V ⊕ U . Then RanT = T (V ⊕ U) = Z ⊕ T (U) and dimT (U) = dimU
since T |V⊕U is injective. Thus

dimKerT = dimX/(V ⊕ U) = dimX/V − dimU

and
dimY/RanT = dimY/(Z ⊕ T (U)) = dimY/Z − dimU,

and the result follows.

From the point of view of solving the equation (12.1) Fredholm operators are
particularly nice because they lead to criteria involving only finitely many conditions,
both for existence and uniqueness of solutions. Indeed, we have that RanT =
(KerT ∗)◦ and Corollary 5.12 shows that KerT ∗ = (RanT )◦ ∼= (Y/RanT )∗. In
particular, KerT ∗ is finite-dimensional. Thus given y ∈ Y equation (12.1) has a
solution x ∈ X if and only if fk(y) = 0, 1 ≤ k ≤ n, where {fk : 1 ≤ k ≤ n} is a basis
for KerT ∗. Moreover, there exists a closed subspace V ofX such thatX = KerT⊕V ,
and the solution is unique subject to x ∈ V . Since V is closed we have V = (V ◦)◦,
and Corollary 5.12 shows that V ◦ ∼= (X/V )∗. Thus dimV ◦ = dimX/V = dimKerT ,
so V ◦ is finite-dimensional and the solution x ∈ X to (12.1) is unique subject to
gk(x) = 0, 1 ≤ k ≤ m, where {gk : 1 ≤ k ≤ m} is a basis for V ◦.

Suppose that X and Y are Banach spaces. If T ∈ B(X,Y ) is an isomorphism
and if S ∈ B(X,Y ) is such that ‖S‖ < ‖T−1‖−1, then as n→ ∞ the partial sums

n
∑

k=0

(−1)k(T−1S)kT−1, n ≥ 0,

converge (absolutely) in the norm of B(Y,X) to the inverse of T + S, so T + S is
also an isomorphism. In particular, isomorphisms form an open subset of B(X,Y ).

Theorem 12.6. Let X and Y be Banach spaces. Then the set of Fredholm operators
is an open subset of B(X,Y ), and moreover the index map is locally constant, and
in particular continuous, on the set of all Fredholm operators.

Proof. Let T ∈ B(X,Y ) be a Fredholm operator. By Theorem 12.5 there exist a
closed finite-codimensional subspace V of X and a finite-dimensional subspace W
of Y such that X = KerT ⊕ V and Y = RanT ⊕W topologically, and T |V is an
isomorphic embedding. Consider the space V ×W endowed with the ∞-norm and,
given S ∈ B(X,Y ), let QS : V × W → Y be given by QS(x, y) = Tx + Sx + y
for x ∈ V , y ∈ W . Then Q0 is an isomorphism and ‖Q0 − QS‖ = ‖S|V ‖ ≤ ‖S‖,
S ∈ B(X,Y ). Thus for ‖S‖ < ‖Q−1

0 ‖−1 the operator QS is again an isomorphism.
In particular, if we let Z = (T + S)(V ) then (T + S)|V maps V isomorphically onto
Z. Moreover, by bijectivity of QS we have Z ⊕W = Y , so Z has the same finite
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codimension in Y as RanT . It follows from Theorem 12.5 that T + S is Fredholm
and that

ind(T + S) = dimX/V − dimY/Z = dimKerT − dimY/RanT = indT,

which completes the proof.

Remark 12.7. Note that by the above proof we have ind(T + S) = indT and
dimY/Ran(T + S) ≤ dimY/RanT for S of sufficiently small norm. It follows that
for such operators S we also have dimKer(T + S) ≤ dimKerT .

Lect 15Theorem 12.8. Let X and Y be Banach spaces and suppose that T, S ∈ B(X,Y )
with T Fredholm and S compact. Then T + S is Fredholm and ind(T + S) = indT .

Proof. By Theorem 12.5 there exists a closed finite-codimensional subspace V of
X such that T |V is an isomorphic embedding. Since S is compact and restricts to an
isomorphic embedding on V ∩Ker(T +S) this space must be finite-dimensional, and
hence dimKer(T+S) <∞. Note that S∗ is compact by Schauder’s Theorem and T ∗

is Fredholm by Proposition 12.4, so the above argument shows that Ker(T ∗+S∗) is
also finite-dimensional. Now let r > 0 be such that ‖Tx‖ ≥ r‖x‖ for all x ∈ V , and
let ε = r/2. By Theorem 11.6 we may find a closed finite-codimensional subspace
W of X such that ‖S|W ‖ ≤ ε. Then V ∩W is closed and of finite codimension in X,
and for x ∈ V ∩W we have ‖(T + S)x‖ ≥ ε‖x‖. Thus (T + S)(V ∩W ) is a Banach
space which has finite codimension in Ran(T +S). Since closed finite-codimensional
subspaces are complemented it follows that Ran(T + S) is complete and therefore
closed. Thus Ran(T + S) = Ker(T ∗ + S∗)◦, so Ran(T + S) has finite codimension
in Y and hence T + S is Fredholm. For 0 ≤ t ≤ 1 let Qt = T + tS. Then each
Qt is Fredholm and Theorem 12.6 implies that the function ψ : [0, 1] → Z given
by ψ(t) = indQt is continuous. By the Intermediate Value Theorem ψ must be
constant, and in particular ind(T + S) = ψ(1) = ψ(0) = indT , as required.

Corollary 12.9 (Fredholm Alternative). Let X be a Banach space and suppose
that T ∈ K(X) and that λ ∈ F \ {0}. Then λ − T is injective if and only if it is
surjective, and

Ran(λ− T ) = Ker(λ− T ∗)◦.

Furthermore, dimKer(λ− T ∗) = dimKer(λ− T ) and both numbers are finite.

Proof. For λ 6= 0 the operator λI is Fredholm with index zero, so by Theorem 12.8
the operator λ − T is also Fredholm and ind(λ − T ) = 0. In particular, λ − T has
closed range, and it is injective if and only if it is surjective. This proves the first
two claims. By Corollary 5.12 we have

dim(X/Ran(λ− T ))∗ = dimRan(λ− T )◦ = dimKer(λ− T ∗),

and hence dimKer(λ− T ∗) = dimX/Ran(λ− T ) = dimKer(λ− T ).

Recall that if X is a complex Banach space and T ∈ B(X), then the spectrum

σ(T ) =
{

λ ∈ C : λ− T is not an isomorphism
}
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of T is a non-empty compact subset and the spectral radius r(T ) = supλ∈σ(T ) |λ|
satisfies r(T ) = limn→∞ ‖Tn‖1/n. Let σp(T ) denote the point spectrum of T , that
is to say the set of eigenvalues of T . If X is finite-dimensional then σ(T ) = σp(T ),
but in general this is not true. However, for compact operators we at least have
σ(T ) \ {0} ⊆ σp(T ), as we now show.

Theorem 12.10. Let X be a complex Banach space and suppose that T ∈ K(X).
Then σ(T ) is at most countably infinite and σ(T ) \ {0} consists of isolated points
which are eigenvalues with finite-dimensional eigenspaces. In particular, if σ(T ) is
infinite then its unique limit point is zero. Furthermore, 0 ∈ σ(T ) whenever X is
infinite-dimensional.

Proof. For λ ∈ C \ {0} it follows from Corollary 12.9 and the Inverse Mapping
Theorem that λ ∈ σ(T ) if and only if λ is an eigenvalue of T with finite-dimensional
eigenspace. Fix λ ∈ C \ {0} and let Yn = Ran(λ − T )n, n ≥ 0, and Y =

⋂∞
n=0 Yn.

Note that Yn+1 ⊆ Yn and that Yn has finite codimension in X for all n ≥ 0. Thus
each Yn, n ≥ 0, is closed and hence so is Y . We now show that λ − T maps
Y onto itself. It is straightforward to see that (λ − T )(Y ) ⊆ Y . To prove the
converse inclusion let y ∈ Y . For each n ≥ 0 there exists xn ∈ Yn such that
(λ− T )xn = y. Moreover, since Ker(λ− T ) is finite-dimensional there exists k ≥ 0
such that Ker(λ− T ) ∩ Yn = Ker(λ− T ) ∩ Yk for all n ≥ k. Thus

xk − xn ∈ Ker(λ− T ) ∩ Yk ⊆ Yn, n ≥ k,

which implies that xk ∈ Y and hence Y ⊆ (λ−T )(Y ), as required. Now T |Y ∈ K(Y ),
so Corollary 12.9 shows that Ker(λ−T )|Y = {0}. By Remark 12.7 there exists ε > 0
such that Ker(µ− T )|Y = {0} for |λ− µ| < ε. If µ 6= λ and x ∈ Ker(µ− T ) then

x = (λ− µ)−n(λ− T )nx ∈ Yn, n ≥ 0,

so x ∈ Y . Thus for 0 < |µ − λ| < ε we have Ker(µ − T ) ⊆ Ker(µ − T )|Y = {0}
and hence µ 6∈ σ(T ) \ {0}. It follows that σ(T ) \ {0} consists of isolated points.
Let σn(T ) = {λ ∈ σ(T ) : |λ| ≥ n−1}, n ≥ 1, and recall that any infinite compact
set contains a limit point. Thus σn(T ) is either empty or finite for each n ≥ 1 and
σ(T ) \ {0} =

⋃

n≥1 σn(T ) is at most countably infinite. Moreover, if σ(T ) is infinite
then since the points in σ(T ) \ {0} are isolated zero must be the unique limit point
of σ(T ). Note finally that if T is surjective then by the Open Mapping Theorem
there exists r > 0 such that B◦

X(r) ⊆ T (B◦
X) and hence by compactness of T the

unit ball BX is compact, so X must be finite-dimensional. Thus 0 ∈ σ(T ) whenever
X is infinite-dimensional.

Remark 12.11. There is an alternative way to proceed after proving that σ(T )\{0}
consists of eigenvalues corresponding to finite-dimensional eigenspaces. Indeed, one
can show by means of a subsequence argument that the subspace of X spanned by
all eigenvectors of T corresponding to eigenvalues in {λ ∈ C : |λ| ≥ r} is finite-
dimensional for each r > 0; see Bollobas, Chapter 13, Theorem 4.

Let X be a complex Hilbert space with inner product (· , ·), and let T ∈ B(X).
Recall that the adjoint operator T ⋆ ∈ B(X) of T is defined by the identity (Tx, y) =
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(x, T ⋆y), x, y ∈ X. By the Riesz Representation Theorem there exists a conjugate-
linear isometric surjection ΦX : X → X∗ such that (ΦXy)(x) = (x, y) for all x, y ∈
X. The adjoint of T is related to the dual of T through the relation T ∗ ◦ ΦX =
ΦX ◦ T ⋆. Indeed, for x, y ∈ X we have

(T ∗(ΦXx))(y) = (ΦXx)(Ty) = (Ty, x) = (y, T ⋆x) = (ΦX(T ⋆x))(y).

Thus the following diagram commutes:

X∗ X∗

X X

T ∗

Φ−1

X
Φ−1

X

T ⋆

ΦX ΦX

Recall that an operator T is said to be self-adjoint if T ⋆ = T . We say that a set
{xα : α ∈ A} is an orthonormal basis for X if ‖xα‖ = 1 for all α ∈ A, (xα, xβ) = 0
whenever α, β ∈ A are distinct and span{xα : α ∈ A} is dense in X.

Theorem 12.12 (Spectral Theorem). Let X be an infinite-dimensional complex
Hilbert space and suppose that T ∈ K(X) is self-adjoint. Then X admits an or-
thonormal basis consisting of eigenvectors of T . Moreover there exist a sequence
(λn)

N
n=1 of non-zero real numbers, where N ∈ N∪{∞}, such that λn → 0 as n→ ∞

when the sequence is infinite, and furthermore there exists a sequence of orthogonal
finite-rank projections (Pn)

N
n=1 such that PmPn = 0 for m 6= n and

T =
N
∑

n=1

λnPn,

where the series converges in the norm of B(X) when N = ∞.

Proof. Recall that σ(T ) ⊆ R when T is self-adjoint, and that eigenvectors corre-
sponding to distinct eigenvalues are orthogonal. Hence existence of the sequences
(λn) and (Pn) follows from Theorem 12.10. If N = ∞, the series

∑N
n=1 λnPn is

Cauchy and hence convergent in B(X). Let S =
∑N

n=1 λnPn. Then Sx = Tx for
any x ∈ X which is a linear combination of eigenvectors of T . Hence the result
will follow once we have shown that X admits an orthonormal basis consisting of
such eigenvectors. Let Y be the closed linear span of all eigenvectors of T . If we
let Bn be an orthonormal basis for Ker(λn − T ) and if we use Zorn’s Lemma to
obtain an orthonormal basis B0 for KerT , then the set

⋃N
n=0Bn is an orthonormal

basis for Y consisting of eigenvectors of T . Let Z = Y ⊥. Since Y is T -invariant
and T is self-adjoint the space Z is also T -invariant, and moreover T |Z is a compact
self-adjoint operator on Z. Theorem 12.10 implies that σ(T |Z) = {0}, because any
eigenvalue of T |Z would also be an eigenvalue of T . By self-adjointness we deduce
that ‖T |Z‖ = r(T |Z) = 0, so Z ⊆ KerT ⊆ Y = Z⊥. Hence Z = {0}, so X = Y .

Remark 12.13. The Spectral Theorem can be extended to the case of compact
normal operators, that is to say compact operators T such that T ⋆T = TT ⋆.
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13 Schauder bases

Lect 16
Given a Banach space X, a set {xn : n ≥ 1} in X is said to be a Schauder basis for
X if every x ∈ X admits a unique representation as a norm-convergent series

x =
∞
∑

n=1

λnxn (13.1)

with λn ∈ F, n ≥ 1. Note that a Schauder basis necessarily forms a linearly in-
dependent set and that any Banach space which admits a Schauder basis must be
separable. As usual in the context of bases, a Schauder basis is strictly speaking an
ordered set, and a permutation of a Schauder basis need not be a Schauder basis. If
{xn : n ≥ 1} is a Schauder basis for X we may consider the linear maps Pn : X → X,
n ≥ 1, given by

Pnx =
n
∑

k=1

λkxk

when x ∈ X has the representation in (13.1). Then P 2
n = Pn for all n ≥ 1 and

‖Pnx−x‖ → 0 as n→ ∞ for all x ∈ X. We may also consider the linear functionals
fn ∈ X ′, n ≥ 1, given by fn(x) = λn when x ∈ X is as in (13.1). The maps Pn, n ≥ 1,
are called the basis projections associated with the Schauder basis {xn : n ≥ 1}
and the functionals fn, n ≥ 1, are the associated basis functionals, sometimes also
referred to as coordinate functionals.

Theorem 13.1. Let X be a Banach space and suppose that {xn : n ≥ 1} is a
Schauder basis for X. Then the basis projections Pn, n ≥ 1, and the basis functionals
fn, n ≥ 1, are all bounded, and in fact there exists M ≥ 1 such that ‖Pn‖ ≤M and
‖fn‖ ≤ 2M‖xn‖

−1 for all n ≥ 1.

Proof. Let the map 9 · 9 : X → R+ be defined by

9x9 = sup{‖Pnx‖ : n ≥ 1}, x ∈ X.

We will see on Problem Sheet 4 that 9 ·9 is a complete norm on X. Note also that
since x = limn→∞ Pnx for all x ∈ X we have that

‖x‖ = lim
n→∞

‖Pnx‖ ≤ 9x9, x ∈ X.

Thus the identity map from (X,9 · 9) to (X, ‖ · ‖) is a continuous bijection, and it
follows from the Inverse Mapping Theorem that 9 ·9 is equivalent to ‖ · ‖, so there
exists M ≥ 1 such that 9x9 ≤M‖x‖ for all x ∈ X. Note finally that

‖Pnx‖ ≤ 9x9 ≤M‖x‖, x ∈ X, n ≥ 1,

and hence ‖Pn‖ ≤M for all n ≥ 1. Since fn(x)xn = (Pn−Pn−1)x for all x ∈ X and
n ≥ 1 (with P0 taken to be the zero operator), the final claim follows at once.

By Remark 11.4 and a result on Problem Sheet 4 there exists a separable Banach
space which does not admit a Schauder basis. However, most classical Banach spaces
which are separable do admit a Schauder basis.
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Example 13.2. (a) If X is a separable Hilbert space then any orthonormal basis
for X is a Schauder basis for X.

(b) If X = ℓp for 1 ≤ p <∞ or X = c0, then the set {en : n ≥ 1} is a Schauder basis
for X. The basis functionals are given by fn(x) = xn for x ∈ X, n ≥ 1. If X = c we
may add e0 = (1, 1, 1, . . . ) to the above basis to get a Schauder basis {en : n ≥ 0}
for X. The basis functional f0 corresponding to e0 is f0(x) = limn→∞ xn, x ∈ X.

(c) Let X = Lp(0, 1), where 1 ≤ p <∞. Given n ≥ 1 we may uniquely express n in
the form n = 2k + j with k ≥ 0 and 0 ≤ j ≤ 2k − 1, and then we may take xn to
be the function satisfying xn(t) = 1 for j2−k < t < (2j + 1)2−k−1 and xn(t) = −1
for (2j + 1)2−k−1 < t < (j + 1)2−k. Together with the constant function x0(t) = 1,
0 < t < 1, we obtain a Schauder basis {xn : n ≥ 0} for X. This is the Haar basis.

(d) Let X = C([0, 1]) and, for n ≥ 0, let xn be as in (e). Now define yn ∈ X by
y0 = x0 and

yn(t) = 2n−1

∫ t

0
xn−1(s) ds, 0 ≤ t ≤ 1, n ≥ 1.

Then {yn : n ≥ 0} is a Schauder basis for X. It is known as Schauder’s basis.

14 Subspaces of classical sequence spaces

The material covered in this section is not examinable. Given a Banach space X, a
subset S = {yn : n ≥ 1} of X is said to be basic if it is a Schauder basis for its closed
linear span Y = spanS. In this case there exist, by Theorem 13.1, basis projections
Pn ∈ B(Y ) and associated basis functionals fn ∈ Y ∗, n ≥ 1. We also know that
sup{‖Pn‖ : n ≥ 1} <∞, and we call the quantity M = sup{‖Pn‖ : n ≥ 1} the basis
constant of S. Then ‖fn‖ ≤ 2M‖yn‖

−1, n ≥ 1. Note that the basis constant M of
any basic set necessarily satisfies M ≥ 1.

Theorem 14.1. Let X be a Banach space and suppose that {yn : n ≥ 1} ⊆ SX is a
basic set with basis constant M . Suppose furthermore that zn ∈ X, n ≥ 1, are such
that

∞
∑

n=1

‖yn − zn‖ <
1

2M
.

Then Y = span{yn : n ≥ 1} is isomorphic to Z = span{zn : n ≥ 1}, and moreover
Y is complemented in X if and only if Z is.

Proof. Let gn ∈ X∗ be Hahn-Banach extensions of the basis functionals fn ∈ Y ∗,
so that ‖gn‖ = ‖fn‖ ≤ 2M , n ≥ 1, and let

Sx =
∞
∑

n=1

gn(x)(yn − zn), x ∈ X.

Then by our assumption S is a well-defined element of B(X) with ‖S‖ < 1. Hence
the operator T = I − S ∈ B(X) is an isomorphism which satisfies Tyn = zn, n ≥ 1,
and it follows that T (Y ) = Z. Suppose that P ∈ B(X) satisfies P 2 = P . If
RanP = Y then we consider Q = TPT−1 ∈ B(X) which satisfies Q2 = Q and
RanQ = Z, and if RanP = Z then we consider Q = T−1PT ∈ B(X) which satisfies
Q2 = Q and RanQ = Z. Hence Y is complemented if and only if Z is.
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Proposition 14.2. Let X = ℓp for 1 ≤ p <∞ or X = c0.

(a) If S = {yn : n ≥ 1} ⊆ SX is disjointly supported, then S is a basic set with
basis constant M = 1 and furthermore the space Y = spanS is isomorphic to
X and complemented in X.

(b) If Z is an infinite-dimensional subspace of X then there exists a disjointly
supported set {yn : n ≥ 1} ⊆ SX and vectors zn ∈ Z, n ≥ 1, such that

∞
∑

n=1

‖yn − zn‖ <
1

2
.

Proof. The proof of part (a) is straightforward, and the proof of part (b) uses the
prototype of a ‘gliding hump’ argument.

Theorem 14.3. Let X = ℓp for 1 ≤ p < ∞ or X = c0, and suppose that Z
is a closed infinite-dimensional subspace of X. Then Z contains a complemented
subspace which is isomorphic to X.

Proof. This follows from Theorem 14.1 and Proposition 14.2.

Corollary 14.4. (a) Let X = ℓ1 or X = c0. Then every infinite-dimensional
subspace of X is non-reflexive.

(b) Every closed infinite-dimensional subspace of ℓ1 has non-separable dual.

We end with a striking result about subspaces of classical sequence spaces.

Theorem 14.5 (Pe lczyński). Let X = ℓp for 1 ≤ p < ∞ or X = c0. Then every
infinite-dimensional complemented subspace of X is isomorphic to X.

Proof. By considering a partition of N into countably many infinite subsets we see
that

X ∼=

( ∞
⊕

n=1

X

)

p

,

where if X = c0 we let p = ∞ and consider X-valued sequences which converge to
zero. If Z is an infinite-dimensional complemented subspace of X then X = Y ⊕ Z
topologically for some closed subspace Y of X and by Theorem 14.3 we have Z =
Z0 ⊕ Z1 topologically, where Z1 ≃ X. Thus X = Z0 ⊕ Z1 ⊕ Y = Z1 ⊕ Y ⊕ Z0, all
direct sums being topological, and hence

Z = Z0 ⊕ Z1 ≃ Z0 ⊕X ≃ Z0 ⊕

( ∞
⊕

n=1

Z1 ⊕ Y ⊕ Z0

)

p

≃

( ∞
⊕

n=1

Z0 ⊕ Z1 ⊕ Y

)

p

≃ X,

as required.
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