
Analytic Number Theory Revision Class 2

1 Summary

• Reminder: please email questions 4 days prior to the classes.

• Next class: Thu 21/05/20 15:00 - 16:00, queries (maynard@maths.ox.ac.uk) by the end
of Sunday 17 May.

• Final class: Wed 27/05/20 10:00-11:00, questions (wangr@maths.ox.ac.uk) by the end
of Saturday 24 May

• Today: 2018 Q1, 2016 Q3, (time didn’t permit) 2016 Q2.

• Questions related to this note: email wangr@maths.ox.ac.uk.
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2 2018 Paper, Q1

(a) [4] Define the Riemann ζ-function ζ(s) for <s > 1, and show that it extends to a meromorphic
function on <s > 0, holomorphic except for a simple pole at s = 1.
(b) [3] Show that

ζ(s) =
N∑
n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞
N

{x}x−1−sdx

for any integer N > 0, and for all <s > 0.
(c) [3] Show that |ζ(σ + it)| = O(log t), uniformly for 1 ≤ σ ≤ 2 and for t ≥ 10.
(d) [5] Show that |ζ ′(σ + it)| = O(log2 t), uniformly for 1 ≤ σ ≤ 2 and for t ≥ 10.
(e) [10] Show that |ζ(1 + it)| � 1/ log7 t, uniformly for t ≥ 10. [You may use any part of the proof
that ζ has no zero on <s = 1 provided you state it correctly.]

(a) Proof.

ζ(s) =
∞∑
n=1

n−s

for <s > 1. By partial summation (see Lemma 4.2 and Lemma 2.2 course notes),

ζ(s) =
∞∑
n=1

n−s = s

∫ ∞
1

x− {x}
xs+1

dx = s

∫ ∞
1

1

xs
dx− s

∫ ∞
1

{x}
xs+1

dx

=
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx.

The integral on the RHS converges absolutely.
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(b) [3] Show that

ζ(s) =
N∑
n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞
N

{x}x−1−sdx

for any integer N > 0, and for all <s > 0.

Proof. Again use partial summation:

ζ(s) =
∑
n≤N

n−s + s

∫ ∞
N

x− {x}
xs+1

dt =
∑
n≤N

n−s + s

∫ ∞
N

1

xs
dx− s

∫ ∞
N

{x}
xs+1

dx

=
∑
n≤N

n−s +
N1−s

s− 1
− s

∫ ∞
N

{x}
xs+1

dx.
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(c) [3] Show that |ζ(σ + it)| = O(log t), uniformly for 1 ≤ σ ≤ 2 and for t ≥ 10.

Proof. Bound each term of the identity

ζ(s) =
N∑
n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞
N

{x}x−1−sdx

as follows:

|
N∑
n=1

1

ns
| = O(logN),

|N
1−s

s− 1
| = O(1),

|s
∫ ∞
N

{x}x−1−sdx| � t

∫ ∞
N

x−2dx� t

N
.

Take N = t to obtain the result.

(d) [5] Show that |ζ ′(σ + it)| = O(log2 t), uniformly for 1 ≤ σ ≤ 2 and for t ≥ 10.

Proof. Differentiate the result from (b) with respect to s.

ζ ′(s) = −
∑
n≤N

n−s log n − N1−s

(s− 1)2
− N1−s logN

s− 1
−
∫ ∞
N

{x}
xs+1

dx − s

∫ ∞
N

{x} log x

xs+1
dx

The first four terms are bounded by O(log2N), O(1), O(logN), O(1/N) respectively. The final
term:

s|
∫ ∞
N

{x} log x

xs+1
dx| � t

∫ ∞
N

x−3/2dx� tN−1/2.

Take N = bt2c so the first term dominates. It follows that

|ζ ′(σ + it)| = O(log2 t) (18.1.1)

Notes: uniformly – there exists absolute constant C such that ζ(σ + it) ≤ C log t for all t.
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(e) [10] Show that |ζ(1 + it)| � 1/ log7 t, uniformly for t ≥ 10. [You may use any part of the proof
that ζ has no zero on <s = 1 provided you state it correctly.]

Proof. Perhaps the easiest thing to do is to use the estimate (Lemma 11.1). For σ > 1,

4<(
ζ ′

ζ
(σ + it)) + <(

ζ ′

ζ
(σ + 2it)) + 3

ζ ′

ζ
(σ) ≤ 0.

Integrate both sides in σ (note ζ(σ + it)→ 1 as σ →∞ for any t)

4<(log(ζ(σ + it))) + <(log(ζ(σ + 2it))) + 3 log ζ(σ) ≥ 0;

take exponents
|ζ(σ + it)|4|ζ(σ + 2it)|(ζ(σ))3 ≥ 1.

Take σ = 1 + ε where ε is a parameter to be specified later. The identity above yields

|ζ(1 + ε+ it)| ≥ |ζ(1 + ε+ 2it)|−1/4(ζ(1 + ε))−3/4.

Use estimates from (c) and ζ(1 + ε) ∼ 1/ε (see part (a)), the RHS is at least

|ζ(1 + ε+ it)| ≥ (log t)−1/4ε3/4. (18.1.2)

To deduce the result for 1 + it, use part (d) and the mean value theorem to deduce

|ζ(1 + it)| ≥ c(log t)−1/4ε3/4 − Cε log2 t,

where c, C are implicit constants from (18.1.2) and the upper bound on the derivative (18.1.1).
Take ε = c′ log−9 t for some sufficiently small absolute constant c′ to obtain the result.
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3 2016 Paper, Q3

(a) [7 marks] Give, without proof, the value of the integral

1

2πi

∫ c+i∞

c−i∞

ys

s(s+ 1)
ds,

where c > 1 and y > 0.
Show that if c > 1 and x > 0 then∑

n≤x

Λ(n)(x− n) =
1

2πi

∫ c+i∞

c−i∞

{
−ζ
′(s)

ζ(s)

}
xs+1

s(s+ 1)
ds.

(b) [12 marks] Assuming that 1/ζ(s) =
∑∞

n=1 µ(n)n−s is absolutely convergent for <(s) > 1, state
a standard theorem which allows you to deduce the Dirichlet series (which you should give) for

F (s) :=
d

ds

(
1

ζ(s)

)
.

Quoting appropriate theorems from the course, give an upper bound for F (s), independent of
σ = <(s), valid in the region 1 < σ ≤ 2, |t| ≥ 2.
For the rest of the question you may assume without proof that F (s) = O(1) for 1 < σ ≤ 2 and
|t| ≤ 2.
Given the formula ∑

n≤x

µ(n)(log n)(x− n) =
−1

2πi

∫ c+i∞

c−i∞
F (s)

xs+1

s(s+ 1)
ds

(valid for any c > 1 and x > 0), which you may assume without proof, show that∑
n≤x

µ(n)(log n)(x− n) = O(x2).
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(a) [7 marks] Give, without proof, the value of the integral

1

2πi

∫ c+i∞

c−i∞

ys

s(s+ 1)
ds,

where c > 1 and y > 0.
Show that if c > 1 and x > 0 then∑

n≤x

Λ(n)(x− n) =
1

2πi

∫ c+i∞

c−i∞

{
−ζ
′(s)

ζ(s)

}
xs+1

s(s+ 1)
ds.

Proof. We have
1

2πi

∫ c+i∞

c−i∞

ys

s(s+ 1)
ds =

{
0 if y ≤ 1;

1− y−1 otherwise.

This can be deduced using Perron’s formula (Chap. 8 notes; you don’t have to clarify this for this
exam question).
Note that −ζ ′(s)/ζ(s) =

∑∞
n=1 Λ(n)n−s for <s > 1. By Fubini’s theorem one may integrate

termwisely if one can show that

∞∑
n=1

Λ(n)

∫ c+i∞

c−i∞

∣∣∣xs+1n−s

s(s+ 1)

∣∣∣ds
is finite. Since c > 1, this integral is bounded by

∞∑
n=1

Λ(n)xc+1n−c(

∫ ∞
−∞

∣∣∣ 1

t2 + 1

∣∣∣dt)� ∞∑
n=1

Λ(n)xc+1n−c <∞.

Thus the right hand is

1

2πi

∫ c+i∞

c−i∞

{
−ζ
′(s)

ζ(s)

}
xs+1

s(s+ 1)
ds

=
∞∑
n=1

Λ(n)

∫ c+i∞

c−i∞

x

2πi

(x/n)s

s(s+ 1)
ds

=
∑
n<x

Λ(n)(x− n). (use the earlier part of this question)

Notes: for c = 1 + ε, we have Λ(n)n−c ≤ (log n)n−1−ε � n−1−ε/2.
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(b) [12 marks] Assuming that 1/ζ(s) =
∑∞

n=1 µ(n)n−s is absolutely convergent for <(s) > 1, state
a standard theorem which allows you to deduce the Dirichlet series (which you should give) for

F (s) :=
d

ds

(
1

ζ(s)

)
.

Proof. Let s = σ+it. If f(s) = ann
−s is absolutely convergent for σ > c, then f(s) is holomorphic

in this region and f ′(s) = −an(log n)n−s. Use this to deduce that F (s) = −
∑∞

n=1 µ(n)(log n)n−s.
Alternatively, use 1/ζ(s) =

∑∞
n=1 µ(n)n−s, −ζ ′(s)/ζ(s) =

∑∞
n=1 Λ(n)n−s and Lemma 5.3 (Dirichlet

series of convolution is product of Dirichlet series) to show F (s) = −
∑∞

n=1(µ ?Λ)n−s. Use PS2Q5
to compute the Dirichlet convolution.

Quoting appropriate theorems from the course, give an upper bound for F (s), independent of
σ = <(s), valid in the region 1 < σ ≤ 2, |t| ≥ 2.

Proof. The estimates needed are the ones proved in Q1, 2018 (you can use the same proof to
obtain the estimates for |t| ≥ 2, with different implicit constant):
- |ζ ′(σ + it)| = O(log2 t), uniformly for 1 ≤ σ ≤ 2 and for |t| ≥ 2;
- |ζ(σ + it)| � 1/ log7 t, uniformly for |t| ≥ 2.
Hence F (s) = −ζ ′(s)/ζ2(s) = O(log16 |t|) for 1 < σ ≤ 2, |t| ≥ 2.
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For the rest of the question you may assume without proof that F (s) = O(1) for 1 < σ ≤ 2 and
|t| ≤ 2.
Given the formula ∑

n≤x

µ(n)(log n)(x− n) =
−1

2πi

∫ c+i∞

c−i∞
F (s)

xs+1

s(s+ 1)
ds

(valid for any c > 1 and x > 0), which you may assume without proof, show that∑
n≤x

µ(n)(log n)(x− n) = O(x2).

Proof. Take c = 1 + 1/ log x. Decompose the integral into two parts:∫ c+i∞

c−i∞
F (s)

xs+1

s(s+ 1)
ds =

(∫
|t|≥2

+

∫
|t|≤2

)
F (c+ it)

xc+it+1

(c+ it)(c+ it+ 1)
dt.

Bound the first part use F (s) = O(log16 |t|) and bound the logarithm by any small power of t:

|
∫
|t|≥2

F (c+ it)
xc+it+1

(c+ it)(c+ it+ 1)
dt| �

∫
|t|≥2

log16(t)xc+1

t2
dt = O(x2).

For the second part, use F (s) = O(1) and |s(s+ 1)| � 1 in this region to deduce that

|
∫
|t|≤2

F (c+ it)
xc+it+1

(c+ it)(c+ it+ 1)
dt| �

∫
|t|≤2

xc+1dt� xc+1 ≤ ex2.

Notes: c is chosen to obtain the O(x2) at the end.
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4 2016 Paper, Q2

(a) [12 marks] For any complex s with <(s) > 0 and any n ∈ N, let

fn(s) =

∫ n+1

n

x− n
xs+1

dx

and

ζ∗(s) =
s

s− 1
− s

∞∑
n=1

fn(s).

Show that ζ∗(s) is defined and holomorphic for <(s) > 0, except for a simple pole at s = 1.
Show by induction on M that

ζ∗(s) =
M1−s

s− 1
+

M∑
n=1

n−s − s
∞∑

n=M

fn(s)

for any M ∈ N.
Deduce by taking M →∞ that ζ∗(s) = ζ(s) for <(s) > 1.
(b) [4 marks] For the rest of this question we use the standard convention by which we merely
write ζ(s) in place of ζ∗(s).
Show that

M∑
n=1

n−1/2 = 2
√
M + ζ(1/2) +O(M−1/2)

for any M ∈ N.
(c) [5 marks] By choosing a suitable value for M show that

ζ(1/2 + it) = O(
√
t)

for t ≥ 2.
(d) [4 marks] Show that if s is real, with 0 < s < 1, then ζ(s) 6= 0.
Notes: due to time limit, we shall only provide a sketch of the proof of this question.
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(a) [12 marks] For any complex s with <(s) > 0 and any n ∈ N, let

fn(s) =

∫ n+1

n

x− n
xs+1

dx

and

ζ∗(s) =
s

s− 1
− s

∞∑
n=1

fn(s).

Show that ζ∗(s) is defined and holomorphic for <(s) > 0, except for a simple pole at s = 1.
Show by induction on M that

ζ∗(s) =
M1−s

s− 1
+

M∑
n=1

n−s − s
∞∑

n=M

fn(s)

for any M ∈ N.
Deduce by taking M →∞ that ζ∗(s) = ζ(s) for <(s) > 1.

Sketch of Proof. The function fn is holomorphic on C. By Weierstrass’ Lemma,
∑∞

n=1 fn(s)
is convergent on <s ≥ c provided the sum is uniformly convergent. Check this for all c ≥ 0 and
conclude that the function is holomorphic on <(s) > 0.
Induction: The base case

ζ∗(s) =
1

s− 1
+ 1− s

∞∑
n=1

fn(s).

For the induction step, one needs

(M + 1)1−s

s− 1
+ (M + 1)−s = (M)1−ss− 1− sfM(s).

This follows from direct computation of fM .
Let <s > 1. By taking M →∞,

M1−s

s− 1
→ 0;

M∑
n=1

n−s → ζ(s)

s

∞∑
n=M

fn(s)→ 0 since
∞∑
n=1

fn(s) converges.
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(b) [4 marks] For the rest of this question we use the standard convention by which we merely
write ζ(s) in place of ζ∗(s).
Show that

M∑
n=1

n−1/2 = 2
√
M + ζ(1/2) +O(M−1/2)

for any M ∈ N.
Sketch of Proof. By (a)

ζ(1/2) = −M
1/2

1/2
+

M∑
n=1

n−1/2 −
∞∑

n=M

fn(1/2)

2
,

but

fn(1/2) =

∫ n+1

n

x− n
xs+1

dx�
∫ n+1

n

x−3/2dx

and so
∞∑

n=M

fn(1/2)

2
�
∫ ∞
M

x−3/2dx�M−1/2.

(c) [5 marks] By choosing a suitable value for M show that

ζ(1/2 + it) = O(
√
t)

for t ≥ 2.
Sketch of Proof. Take M to be the largest integer less than t and perform similar estimates as
before.
(d) [4 marks] Show that if s is real, with 0 < s < 1, then ζ(s) 6= 0.
Sketch of Proof. For 0 < s < 1 we have s/(s− 1)) < 0 and fn(s) > 0, so ζ(s) < 0 by (a).

12


