Question 1. Prove the following.

- (i) $\log^4 X < X^{1/10}$ for all sufficiently large X;
- (ii) $e^{\sqrt{\log X}} = O_{\varepsilon}(X^{\varepsilon})$ for all $\varepsilon > 0$ and $X \geqslant 1$;

(Here $O_e(h(x))$ means a function $g(x)$ which satisfies $|g(x)| \leq C_e h(x)$ for some constant C_{ϵ} depending only on ϵ)

(iii) $X(1 + e^{-\sqrt{\log X}}) + X^{3/4} \sin X \sim X$.

Question 2. Let $\text{Li}(x) := \int_2^x \frac{dt}{\log t}$.

(i) Show that $\text{Li}(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)$ for $x \geq 3$.

(ii) Show that for any
$$
k \ge 1
$$
, $\text{Li}(x) = \sum_{j=1}^{k} \frac{(j-1)!x}{(\log x)^j} + O\left(\frac{k!^2 x}{(\log x)^{k+1}}\right)$ for $x \ge 3$.

Question 3. In the following exercise, $a(X), b(X) \geq 2$ are functions tending to ∞ as $X \to \infty$. For each statement below, either give a proof of its correctness or a counterexample.

- (i) If $a(X) \sim b(X)$ then $\frac{a(X)}{\log(a(X))} \sim \frac{b(X)}{\log(b(X))}$.
- (ii) If $a(X) b(X) \to 0$ then $a(X) \sim b(X)$.
- (iii) If $a(X) \sim b(X)$ then $a(X) b(X) \to 0$.
- (iv) If $a(X) \sim b(X)$ and $a'(X) := \sum_{y \leqslant X} a(y)$, $b'(X) := \sum_{y \leqslant X} b(y)$ then $a'(X) \sim b'(X)$.
- (v) If $a'(X) \sim b'(X)$ where $a'(X) := \sum_{y \leqslant X} a(y)$, $b'(X) := \sum_{y \leqslant X} b(y)$, then $a(X) \sim b(X)$.

Question 4. Show that there are arbitrarily large gaps between consecutive primes by

- (i) using the bound $\pi(x) = O(x/\log x)$;
- (ii) considering the numbers $n! + 2, \ldots, n! + n$.

Which of the two approaches gives the better bound?

Question 5. Assume that $\pi(x) \sim x/\log x$.

- (i) Show that $p_n \sim n \log n$, where p_n denotes the *n*th prime.
- (ii) Deduce that $p_{n+1} \sim p_n$ and $\sup_{p_n \leq x} (p_{n+1} p_n) = o(x)$.

Question 6. Let X be an integer.

(i) Show that

$$
\log(X!) = \sum_{n \le X} \log(n),
$$

and

$$
\log(X!) = \sum_{p \le X} \log p \left(\lfloor \frac{X}{p} \rfloor + \lfloor \frac{X}{p^2} \rfloor + \dots \right).
$$

(ii) Show that

$$
\sum_{n \leq X} \log n = X \log X - X + O(\log X),
$$

and so

$$
\sum_{p\leqslant X}\log p\left(\lfloor \frac{X}{p}\rfloor+\lfloor \frac{X}{p^2}\rfloor+\dots\right)=X\log X-X+O(\log X).
$$

- (iii) Show that the contribution from the terms $\lfloor \frac{X}{p^k} \rfloor$ with $k \geq 2$ is $O(X)$.
- (iv) Deduce Mertens' first estimate

$$
\sum_{p \leqslant X} \frac{\log p}{p} = \log X + O(1).
$$

Explain why this remains valid even if X is not necessarily an integer.

Question 7. Using Mertens' first estimate above, prove the second Mertens estimate: we have

$$
\sum_{p \leqslant X} \frac{1}{p} = \log \log X + O(1).
$$

Deduce that there are constants $c_1, c_2 > 0$ such that

$$
\frac{c_1}{\log X} \leqslant \prod_{p \leqslant X} \left(1 - \frac{1}{p}\right) \leqslant \frac{c_2}{\log X}.
$$

Question 8. Let p_n denote the *n*th prime.

- (i) Is it the case that, for sufficiently large n, the sequence $p_{n+1}-p_n$ is strictly increasing?
- (ii) Is it the case that, for sufficiently large n, the sequence $p_{n+1} p_n$ is nondecreasing?

james.maynard@maths.ox.ac.uk