Analytic Number Theory Class 4

- Today: 2017Q1, 2015Q3, 2014Q3(b,c)
- Did you receive solutions of the 2019 paper?
- Email wangr@maths.ox.ac.uk if there are any queries related to the notes.

2017, Q1
(a) $D_{f}(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$.
(b) [16] Let $f(n)=(-1)^{n+1}$.

Show that $D_{f}(s)$ defines a holomorphic function for $\Re s>0$.
Give an expression for $D_{f}(s)$ in terms of the Riemann ζ-function, valid when $\Re s>1$.
Hence, or otherwise, prove that $\zeta(s)$ extends to a meromorphic function on $\Re s>0$ and that it has no real zeros on the segment $(0,1)$.
(c) [8] Now let f be the multiplicative function for which $f(2)=-2, f(p)=1$ when p is an odd prime and $f\left(p^{j}\right)=0$ whenever p is a prime and $j \geq 2$. Assuming the Riemann hypothesis and any facts about ζ you need, show that $D_{f}(s)$ extends to a holomorphic function on $\Re s>\frac{1}{4}$.

Proof. By the mean value theorem.

$$
D_{f}(s)=\sum_{n=1}^{\infty}(-1)^{n+1} n^{-s}=1-2^{-s}+\ldots=-\sum_{k} \int_{2 k-1}^{2 k} s y^{-s-1} d y
$$

To bound the RHS:

$$
\int_{2 k-1}^{2 k} s y^{-s-1} d y \leq s(2 k-1)^{-\Re s-1}
$$

which is summable uniformly in compact sets of $\Re s>0$, and so the series $-\sum_{k} \int_{2 k-1}^{2 k} s y^{-s-1} d y$ is uniformly convergent. It follows from complex analysis that $D_{f}(s)$ defines a holomorphic function for $\Re s>0$.

Note that for $\Re s>1$,

$$
\begin{gathered}
\zeta(s)=\sum_{n=1}^{\infty} n^{-s} \\
2^{-s} \zeta(s)=\sum_{n=1}^{\infty}(2 n)^{-s} . \\
\zeta(s)-2^{1-s} \zeta(s)=D_{f}(s) .
\end{gathered}
$$

The above identity yields

$$
\zeta(s)=D_{f}(s)\left(1-2^{1-s}\right)^{-1} \text { for } \Re s>1
$$

Since $D_{f}(s)$ and $1-2^{1-s}$ are holomorphic on $\Re s>0$, the RHS is meromorphic on $\Re s>0$. Hence, ζ extends to a meromorphic function on $\Re s>0$. To show the final claim, note that $\left(1-2^{1-s}\right)^{-1} \neq 0$ and $D_{f}(s)>1-2^{-s}>0$ on $(0,1)$.
"Or otherwise": alternatively, use Chapter 4 lecture notes.
(c) [8] Now let f be the multiplicative function for which $f(2)=-2, f(p)=1$ when p is an odd prime and $f\left(p^{j}\right)=0$ whenever p is a prime and $j \geq 2$. Assuming the Riemann hypothesis and any facts about ζ you need, show that $D_{f}(s)$ extends to a holomorphic function on $\Re s>\frac{1}{4}$

Proof. By multiplicativity,

$$
D_{f}(s)=\left(1-2^{-s+1}\right) \prod_{p \geq 3}\left(1+p^{-s}\right)
$$

Since $1-p^{-2 s}=\left(1+p^{-s}\right)\left(1-p^{-s}\right), \zeta(s)=\prod_{p}\left(1+p^{-s}+p^{-2 s}+\ldots\right)=\prod_{p}\left(1-p^{-s}\right)^{-1}$,

$$
D_{f}(s)=\frac{1-2^{-s+1}}{1+2^{-s}} \prod_{p}\left(1-p^{-2 s}\right) \prod_{p}\left(1-p^{-s}\right)^{-1}=\frac{1-2^{-s+1}}{1+2^{-s}} \frac{\zeta(s)}{\zeta(2 s)}
$$

- By RH, all zeros of $\zeta(2 s)$ are on the line $s=1 / 4$, so $\zeta(2 s) \neq 0$ on $\Re s>1 / 4$.
$-\zeta(s)\left(1-2^{-s+1}\right)$ is entire since $\zeta(s)$ has a simple pole at $s=1$ and $1-2^{-s+1}=0$ at $s=1$.
$-1+2^{-s}$ has no zeros on $\Re s>1 / 4$.

2015, Q3
(a) [5] Write down, without proof, the value of the integral

$$
\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{x^{s}}{s(s+1)} \mathrm{d} s
$$

where c and x are positive real numbers. Show that

$$
\sum_{n \leq x} \frac{1+\Lambda(n)}{n}\left(1-\frac{n}{x}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty}\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)} \mathrm{d} s
$$

for any real $c>0$. (You need not justify the interchange of summation and integration.)
(b) [14] Prove that

$$
\sum_{n \leq x} \frac{1+\Lambda(n)}{n}\left(1-\frac{n}{x}\right)-2 \log x \rightarrow-2
$$

as $x \rightarrow \infty$.
[The following facts may be used without proof. Firstly, if $s=\sigma+$ it with $1 \leq \sigma \leq 2$ and $|t| \geq 2$, then

$$
\zeta(s)=O(\log |t|), \quad \zeta^{\prime}(s)=O\left(\log ^{2}|t|\right) \quad \text { and } \frac{1}{\zeta(s)}=O\left((\log |t|)^{7}\right)
$$

Secondly, for any given $T>0$ there is a real number $\alpha<1$ depending on T, such that the rectangle

$$
R(\alpha):=\{s \in \mathbb{C}: \alpha \leq \Re(s) \leq 2,|\Im(s)| \leq T\}
$$

contains no zeros of $\zeta(s)$. Thirdly, the function

$$
\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)}
$$

has a double pole at $s=0$ with residue $2(\log x-1)$.]
(c) [6] Deduce that

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}-\log x \rightarrow-\gamma
$$

as $x \rightarrow \infty$, where γ is Euler's constant.
[You may assume without proof that

$$
\sum_{n \leq x} n^{-1}=\log x+\gamma+O\left(x^{-1}\right)
$$

for $x \geq 1$, and that $\psi(x) \sim x$.]
Note re. fact 2 zero-free region (for both this question and Q3 2014): there seem to be different versions either saying $\alpha>0$ or $\alpha<1$. The former assumption doesn't exclude the possibility that $\alpha>1$ which is used to bound the integral on the vertical path.
I think it's safe to use $\alpha<1$ by mentioning the classical zero-free region (or any other stronger results) without proofs. It might also be okay to assume so as $\zeta(s)$ has no zeros on $\Re s \geq 1$ is the well-known PNT.
(a) [5] Write down, without proof, the value of the integral

$$
\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{x^{s}}{s(s+1)} \mathrm{d} s
$$

where c and x are positive real numbers. Show that

$$
\sum_{n \leq x} \frac{1+\Lambda(n)}{n}\left(1-\frac{n}{x}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty}\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)} \mathrm{d} s
$$

for any real $c>0$. (You need not justify the interchange of summation and integration.)
Proof. We have

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s}}{s(s+1)} \mathrm{d} s= \begin{cases}0 & \text { if } x \leq 1 \\ 1-x^{-1} & \text { otherwise }\end{cases}
$$

Can be clarified using results from Chapter 8 notes.
Note that $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}-\zeta^{\prime}(s) / \zeta(s)=\sum_{n=1}^{\infty} \Lambda(n) n^{-s}$ for $\Re s>1$. Use termwise integration and the identity stated at the beginning:

$$
\begin{aligned}
\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty}\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)} \mathrm{d} s & =\sum_{n=1}^{\infty} \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{1+\Lambda(n)}{n} \frac{(x / n)^{s}}{s(s+1)} d s \\
& =\sum_{n \leq x} \frac{1+\Lambda(n)}{n}\left(1-\frac{n}{x}\right)
\end{aligned}
$$

(b) [14] Prove that

$$
\sum_{n \leq x} \frac{1+\Lambda(n)}{n}\left(1-\frac{n}{x}\right)-2 \log x \rightarrow-2
$$

as $x \rightarrow \infty$.
[The following facts may be used without proof. Firstly, if $s=\sigma+$ it with $1 \leq \sigma \leq 2$ and $|t| \geq 2$, then

$$
\zeta(s)=O(\log |t|), \quad \zeta^{\prime}(s)=O\left(\log ^{2}|t|\right) \quad \text { and } \frac{1}{\zeta(s)}=O\left((\log |t|)^{7}\right)
$$

Secondly, for any given $T>0$ there is a real number $\alpha<1$ depending on T, such that the rectangle

$$
R(\alpha):=\{s \in \mathbb{C}: \alpha \leq \Re(s) \leq 2,|\Im(s)| \leq T\}
$$

contains no zeros of $\zeta(s)$. Thirdly, the function

$$
\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)}
$$

has a double pole at $s=0$ with residue $2(\log x-1)$.]
Proof. We choose $c=(\log x)^{-1}$. By the previous part, we have the identity

$$
\sum_{n \leq x} \frac{1+\Lambda(n)}{n}\left(1-\frac{n}{x}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty}\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)} \mathrm{d} s
$$

First, since $\zeta(s)=O(\log |t|)$ and $\zeta^{\prime}(s) / \zeta(s)=O\left(\log ^{9}|t|\right)$ for $\Re s=c$ and $|t|>2(1<c+1<2$, fact 1), it follows that for any $|t|>2$

$$
\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)} \ll \log ^{9}|t| \frac{x^{\log x}}{|t|^{2}} \ll|t|^{-3 / 2}
$$

and so for any $T>2$

$$
\int_{c+i T}^{c+i \infty}\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)} \mathrm{d} s=O\left(T^{-1 / 2}\right)
$$

Thus, for any $\epsilon>0$ there exists some T such that the above expression is less than ϵ. Fix this choice of T.
To bound the integral between $c-i T$ and $c+i T$, we apply Cauchy's residue theorem as follows. Let $\alpha=\alpha_{T}$ be the real number provided by fact 2 . We move the contour of integration so as to go from $c-i T$ to $\alpha-1-i T$, to $\alpha-1+i T$, and then to $c+i T$. By the second fact, $\zeta(s+1)$ doesn't have any zeros in this region, so the only pole is at $s=0$, whose residue $2(\log x-1)$ by fact 3 .
To bound the integrals along the contour, by fact 2 the function $\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right)$ is continuous on the contour, and so by fact 1 it is uniformly bounded by some constant $M=M(T)$. Hence,

$$
\int_{\alpha-1+i T}^{c+i T}\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)} \mathrm{d} s \ll M \int_{\alpha-1}^{c} x^{y} d y \ll M \frac{x^{c}-x^{\alpha-1}}{\log x}<\frac{e M}{\log x}
$$

and one can estimate the integral from $c-i T$ to $\alpha-1-i T$ similarly. The vertical integral is bounded by

$$
\int_{\alpha-1-i T}^{\alpha-1+i T}\left(\zeta(s+1)-\frac{\zeta^{\prime}(s+1)}{\zeta(s+1)}\right) \frac{x^{s}}{s(s+1)} \mathrm{d} s \ll 2 T M x^{\alpha-1} .
$$

Thus for sufficiently large x (depending on T), the integrals on the contour is bounded by ϵ.
(c) Deduce that

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}-\log x \rightarrow-\gamma
$$

as $x \rightarrow \infty$, where γ is Euler's constant.
[You may assume without proof that

$$
\sum_{n \leq x} n^{-1}=\log x+\gamma+O\left(x^{-1}\right)
$$

for $x \geq 1$, and that $\psi(x) \sim x$.]
Proof. Substitute all the identities. Recall that by (b)

$$
\sum_{n \leq x} \frac{1+\Lambda(n)}{n}\left(1-\frac{n}{x}\right)-2 \log x \rightarrow-2
$$

as $x \rightarrow \infty$.

$$
\sum_{n \leq x} \frac{1+\Lambda(n)}{n}\left(1-\frac{n}{x}\right)=\sum_{n \leq x} \frac{\Lambda(n)}{n}+\sum_{n \leq x} n^{-1}-1-\sum_{n \leq x} \Lambda(n) x^{-1}
$$

By the limits provided,

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n}+\log x+\gamma-2-2 \log x \rightarrow-2
$$

as $x \rightarrow \infty$.

2014, Q3
Let $f(n)$ be a non-negative arithmetic function and write

$$
\eta(x)=\sum_{n \leq x} f(n) \quad \text { and } \quad \eta_{1}(x)=\int_{0}^{x} \eta(t) \mathrm{d} t
$$

You may assume in the rest of the question that if $\eta_{1}(x) \sim x^{2} / 2$ as $x \rightarrow \infty$ then $\eta(x) \sim x$.
(a) Not covered in the current course.
(b) [12] Define the arithmetic function $\lambda(n)$ by setting $\lambda(1)=1$ and

$$
\lambda\left(p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}\right)=(-1)^{e_{1}+\ldots+e_{k}}
$$

for any distinct primes p_{1}, \ldots, p_{k}.
Using the facts below, and starting from the formula

$$
\sum_{n \leq x} \lambda(n)(x-n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta(2 s)}{\zeta(s)} x^{s+1} \frac{\mathrm{~d} s}{s(s+1)} \quad(c>1),
$$

which you may also use without proof, show that

$$
\sum_{n \leq x} \lambda(n)(x-n)=o\left(x^{2}\right) .
$$

[The following facts may be used without proof. Firstly, if $1 \leq \Re(s) \leq 2$ and $|\Im(s)| \geq 2$, then

$$
\frac{\zeta(2 s)}{\zeta(s)}=O\left((\log |t|)^{7}\right)
$$

where $t=\Im(s)$. Secondly, for any given $T>0$ there is a real number $\alpha<1$ depending on T, such that the rectangle

$$
R(\alpha):=\{s \in \mathbb{C}: \alpha \leq \Re(s) \leq 2,|\Im(s)| \leq T\}
$$

contains no zeros of $\zeta(s)$. Thirdly, $\zeta(2 s) / \zeta(s)$ has a removable singularity at $s=1$.]
(c) [6] By applying the Tauberian result (stated at the beginning) to $f(n)=1+\lambda(n)$ show that

$$
\sum_{n \leq x} \lambda(n)=o(x)
$$

and deduce that there is a number x_{0} such that $\lambda(n)$ changes sign at least once in the interval $\left[\frac{99}{100} x, x\right]$, whenever $x \geq x_{0}$.
(b) [12] Define the arithmetic function $\lambda(n)$ by setting $\lambda(1)=1$ and

$$
\lambda\left(p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}\right)=(-1)^{e_{1}+\ldots+e_{k}}
$$

for any distinct primes p_{1}, \ldots, p_{k}.
Using the facts below, and starting from the formula

$$
\sum_{n \leq x} \lambda(n)(x-n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta(2 s)}{\zeta(s)} x^{s+1} \frac{\mathrm{~d} s}{s(s+1)} \quad(c>1)
$$

which you may also use without proof, show that

$$
\sum_{n \leq x} \lambda(n)(x-n)=o\left(x^{2}\right)
$$

[The following facts may be used without proof. Firstly, if $1 \leq \Re(s) \leq 2$ and $|\Im(s)| \geq 2$, then

$$
\frac{\zeta(2 s)}{\zeta(s)}=O\left((\log |t|)^{7}\right)
$$

where $t=\Im(s)$. Secondly, for any given $T>0$ there is a real number $\alpha<1$ depending on T, such that the rectangle

$$
R(\alpha):=\{s \in \mathbb{C}: \alpha \leq \Re(s) \leq 2,|\Im(s)| \leq T\}
$$

contains no zeros of $\zeta(s)$. Thirdly, $\zeta(2 s) / \zeta(s)$ has a removable singularity at $s=1$.]
Proof. Proceed similarly as 2015 Q2(b). Choose $c=1+(\log x)^{-1}$.
Bound the integral for $s=c+i t$ and $|t|>T$: fact 1 states $\zeta(2 s) / \zeta(s)=O\left(\log ^{7}|t|\right)$ for $\Re s=c$ and $|t|>2(1<c+1<2$, fact 1$)$, it follows that for any $|t|>2$

$$
\frac{\zeta(2 s)}{\zeta(s)} x^{s+1} \frac{\mathrm{~d} s}{s(s+1)} \ll \log ^{7}|t| \frac{x^{1+\log x+1}}{|t|^{2}} \ll x|t|^{-3 / 2}
$$

and so for any $T>2$

$$
\int_{c+i T}^{c+i \infty} \frac{\zeta(2 s)}{\zeta(s)} x^{s+1} \frac{\mathrm{~d} s}{s(s+1)} \mathrm{d} s=O\left(x^{2} T^{-1 / 2}\right)
$$

Thus, for any $\epsilon>0$ there exists some T such that the above expression is less than ϵ. Fix this choice of T.

To bound the integral between $c-i T$ and $c+i T$, we apply Cauchy's residue theorem as follows. Let $\alpha=\alpha_{T}$ be the real number provided by fact 2 . We move the contour of integration so as to go from $c-i T$ to $\alpha-i T$, to $\alpha+i T$, and then to $c+i T$. By the second fact, $\zeta(s)$ doesn't have any zeros in this region, so the only singularity is at $s=1$, which is told to be removable by fact 3 .

To bound the integrals along the contour, by fact 2 the function $\zeta(2 s) / \zeta(s)$ is continuous on the contour, and so by fact 1 it is uniformly bounded by some constant $M=M(T)$. Hence,

$$
\int_{\alpha+i T}^{c+i T} \frac{\zeta(2 s)}{\zeta(s)} x^{s+1} \frac{\mathrm{~d} s}{s(s+1)} \mathrm{d} s \ll M \int_{\alpha}^{c} x^{y+1} d y \ll M \frac{x^{c+1}-x^{\alpha+1}}{\log x}<\frac{e M x^{2}}{\log x}
$$

and one can estimate the integral from $c-i T$ to $\alpha-i T$ similarly. The vertical integral is bounded by

$$
\int_{\alpha-i T}^{\alpha+i T} \frac{\zeta(2 s)}{\zeta(s)} x^{s+1} \frac{\mathrm{~d} s}{s(s+1)} \mathrm{d} s \ll 2 T M x^{\alpha+1}
$$

Thus for sufficiently large x (depending on T), the integrals on the contour is bounded by ϵ.
(c) [6] By applying the Tauberian result (stated at the beginning) to $f(n)=1+\lambda(n)$ show that

$$
\sum_{n \leq x} \lambda(n)=o(x)
$$

and deduce that there is a number x_{0} such that $\lambda(n)$ changes sign at least once in the interval $\left[\frac{99}{100} x, x\right]$, whenever $x \geq x_{0}$.

The Tauberian result: let f be a non-negative arithmetic function, $\eta(x)=\sum_{n \leq x} f(n)$ and $\eta_{1}(x)=\int_{0}^{x} \eta(t) \mathrm{d} t$. If $\eta_{1}(x) \sim x^{2} / 2$ as $x \rightarrow \infty$ then $\eta(x) \sim x$.

Proof. f is nonnegative. Then $\eta_{1}(x)=\sum_{n \leq x}(x-n)(1+\lambda(n))=\sum_{n \leq x}(x-n)+o\left(x^{2}\right)$ by (b). Thus the Tauberian bound says

$$
\eta(x)=\sum_{n \leq x}(1+\lambda(n))=x(1+o(1))
$$

and the first part of this question follows.
By subtraction

$$
\sum_{n=99 x / 100}^{x} \lambda(n)=\sum_{n=1}^{x} \lambda(n)-\sum_{n=1}^{99 x / 100} \lambda(n)=o(x) .
$$

In particular, for sufficiently large x

$$
\sum_{n=99 x / 100}^{x} \lambda(n)<x / 200
$$

If there isn't any sign change, then $\left|\sum_{n=99 x / 100}^{x} \lambda(n)\right|>x / 200$ which is a contradiction.

Good luck!

