Analytic Number Theory Class 4

- Today: 2017Q1, 2015Q3, 2014Q3(b,c)
- Did you receive solutions of the 2019 paper?
- Email wangr@maths.ox.ac.uk if there are any queries related to the notes.



2017, Q1

(a) Dy(s) = S50, fln)n

(b) [16] Let f(n) = (=1)"*".

Show that Dy(s) defines a holomorphic function for s > 0.

Give an expression for Dy(s) in terms of the Riemann ¢-function, valid when Rs > 1.

Hence, or otherwise, prove that ((s) extends to a meromorphic function on fs > 0 and that it has
no real zeros on the segment (0,1).

(c) [8] Now let f be the multiplicative function for which f(2) = —2, f(p) = 1 when p is an odd
prime and f(p’) = 0 whenever p is a prime and j > 2. Assuming the Riemann hypothesis and any
facts about ¢ you need, show that D¢(s) extends to a holomorphic function on Rs > %L.

Proof. By the mean value theorem.

k—1

> 2k
Dy(s) = Z<_1)n+1”75 =1-274..=- Z/ sy~ tdy.
k 2

n=1
To bound the RHS:

2%
/ sy~ ldy < s(2k — 1)
2%—1

which is summable uniformly in compact sets of s > 0, and so the series — ), 22:_1 sy~ tdy is
uniformly convergent. It follows from complex analysis that D¢(s) defines a holomorphic function
for Ks > 0.

Note that for Rs > 1,

27C(s) = Y (2n) .

n=1

G(s) = 2'7°¢(s) = Dy(s).

The above identity yields
C(s) = Ds(s)(1 —27%)"" for Rs > 1.

Since Dy(s) and 1—2'"% are holomorphic on Rs > 0, the RHS is meromorphic on Rs > 0. Hence, ¢
extends to a meromorphic function on Rs > 0. To show the final claim, note that (1 —2'7%)"1 £ 0
and Ds(s) >1—27°>0on (0,1).

“Or otherwise”: alternatively, use Chapter 4 lecture notes.



(c) [8] Now let f be the multiplicative function for which f(2) = —2, f(p) = 1 when p is an odd
prime and f(p’) = 0 whenever p is a prime and j > 2. Assuming the Riemann hypothesis and any
facts about ¢ you need, show that D¢(s) extends to a holomorphic function on Rs > }L

Proof. By multiplicativity,

Dy(s) = (1 =2 [ +p™).

p>3

Since 1 —p™ = (1+p~*)(1 —p~°), ¢(s) = [[,(L +p* +p7* +..) = [[,(1 —p~*) 7",

1 — 9-stl 0 e 1= 9—s+l (g
Dy(s) = WH“ —p ) [Ja-p)" = 142 CC((ZS))'

- By RH, all zeros of ((2s) are on the line s = 1/4, so ((2s) # 0 on fs > 1/4.
- ((s)(1 — 2751) is entire since ((s) has a simple pole at s =1 and 1 — 27T =0 at s = 1.
- 1+ 27° has no zeros on s > 1/4.



2015, Q3
(a) [5] Write down, without proof, the value of the integral

1 c+ico s

- T g
27 Jolino S(s+1) &

where ¢ and x are positive real numbers. Show that

DI 02 [ -6

n<w —ioco

for any real ¢ > 0. (You need not justify the interchange of summation and integration.)
(b) [14] Prove that

21+TM<1—§>—210g$—>—2

n<x
as r — oo.
[The following facts may be used without proof. Firstly, if s = o + it with 1 <o <2 and [t| > 2,
then

1
¢(s) = O(log t]), ('(s) =O(log”[¢|) and ) - O((log [¢])").
Secondly, for any given T > 0 there is a real number o < 1 depending on T', such that the rectangle
Rla) ={seC:a<R(s) <2, ()| <T}

contains no zeros of ((s). Thirdly, the function

Ceany
C(s+1)) s(s+1)

has a double pole at s = 0 with residue 2(logx — 1).]

(c) [6] Deduce that
A(n)
Z — —logz — —v
n

n<x

(s

as r — 00, where v is Euler’s constant.
[You may assume without proof that

Zn‘l =logz +v+O0O(z™")

n<x

for x> 1, and that ¥(zx) ~ x.]

Note re. fact 2 zero-free region (for both this question and Q3 2014): there seem to be different
versions either saying a > 0 or aw < 1. The former assumption doesn’t exclude the possibility that
a > 1 which is used to bound the integral on the vertical path.

I think it’s safe to use aw < 1 by mentioning the classical zero-free region (or any other stronger

results) without proofs. It might also be okay to assume so as ((s) has no zeros on s > 1 is the
well-known PNT.



(a) [5] Write down, without proof, the value of the integral

1 c+ioco s

c—ioco S(S + 1)

27

ds,

where ¢ and x are positive real numbers. Show that

Zl+_A<”)(1_E) :L/““’
n x 2mi |,

_d(s+1) x® .
2 (e e

for any real ¢ > 0. (You need not justify the interchange of summation and integration.)

Proof. We have ‘
1 / efiee s d 0 if v <1;
- ——ds =
270 Joino S(s+ 1) 1—27! otherwise.

100

Can be clarified using results from Chapter 8 notes.
Note that ¢(s) = > 2, n~* —=('(s)/C(s) = D2 A(n)n~° for Rs > 1. Use termwise integration
and the identity stated at the beginning:

1 et ('(s+1) x® cHoe ) 4 A(n) (x/n)*
2mi Joi (C(S+1)_ C(s—}—l)) ZQm/ (s+1)ds

:ZI+A( )(1_Q>'

n<x




(b) [14] Prove that
E 1—|——A(n)<1_2) —2logx — —2
n x

n<x
as r — 00.
[The following facts may be used without proof. Firstly, if s = o + it with 1 < o <2 and [t| > 2,
then

¢(s) = Olog [t]), ¢'(s) = O(log |t]) and ﬁ = O((log|t])").

Secondly, for any given T > 0 there is a real number o < 1 depending on T', such that the rectangle
Rla) ={seC:a<R(s) <2, [S(s)| <T}
contains no zeros of ((s). Thirdly, the function
(s + 1)) x
+1) -
(C(S ) = ) e

has a double pole at s = 0 with residue 2(logz — 1).]
Proof. We choose ¢ = (logz)~!. By the previous part, we have the identity

A(n n ctice '(s x*
;HT()@_;):%/CM (€(8+1)_E‘((31—11))>3(3+1)d8'

First, since ((s) = O(log|t|) and ¢’(s)/¢(s) = O(log®|t]) for Rs = cand |t| >2 (1 <c+1 < 2,

fact 1), it follows that for any |t| > 2

s+
((s+1)

s Ilogr
) s <o T <

(s

and so for any T' > 2

[ (cr0-GE) e =0

Thus, for any € > 0 there exists some T such that the above expression is less than e. Fix this
choice of T.

To bound the integral between ¢ — iT" and ¢ + ¢T', we apply Cauchy’s residue theorem as follows.
Let o = ap be the real number provided by fact 2. We move the contour of integration so as to go
from ¢ —iT to « — 1 — 4T, to o — 1 4+ 4T, and then to ¢+ ¢T. By the second fact, {(s+ 1) doesn’t
have any zeros in this region, so the only pole is at s = 0, whose residue 2(logx — 1) by fact 3.
(s+1
%((SH))
on the contour, and so by fact 1 it is uniformly bounded by some constant M = M (T'). Hence,

c+iT C/(s + 1) 5 c ¢ — ‘,L,ozfl eM
1) — d M Yd M
/a—1+z'T <<(S T C(s+1) ) s(s+1) 0 /a—l s log = = log x

and one can estimate the integral from ¢ — iT to a — 1 — ¢T" similarly. The vertical integral is

bounded by
a—1+T ('(s+1) xs
+1) — ds < 2T Mz*™ .
[ (o) wrm !

Thus for sufficiently large x (depending on T'), the integrals on the contour is bounded by e.

To bound the integrals along the contour, by fact 2 the function (C (s+1)— ) is continuous
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(c) Deduce that
A(n)
5 ——= —logz — —v
n

n<x

as r — 00, where v is Euler’s constant.
[You may assume without proof that

Zn’l =logz +v+O(z™")

n<x

for x> 1, and that ¥ (z) ~ x.]

Proof. Substitute all the identities. Recall that by (b)

Z%(l—g) —2logx — -2

n<x

as r — OQ.

ZHTAW(“Z) :Z¥+an_1_zA<n>xl.

n<lz n<lx n<lx n<lz

By the limits provided,

A(n)

Z—+10g:1:—|—7—2—210g:v—>—2
n
n<x

as r — OQ.



2014, Q3
Let f(n) be a non-negative arithmetic function and write

- Zf(n) and 7 (x) = /Ow n(t)dt.

You may assume in the rest of the question that if ni(z) ~ 2%/2 as v — oo then n(z) ~ .
(a) Not covered in the current course.
(b) [12] Define the arithmetic function A(n) by setting A(1) = 1 and

AP p) = (1),
for any distinct primes py,..., pg.

Using the facts below, and starting from the formula

1 eHioo (25) oy ds
2_Mm)w = n) 2m/cm " serp 7Y

n<x
which you may also use without proof, show that

Z)\ (x —n) = o(2?).

n<x

[The following facts may be used without proof. Firstly, if 1 < R(s) <2 and |J(s)| > 2, then
¢(2s)

¢(s)

where t = J(s). Secondly, for any given T > 0 there is a real number a < 1 depending on T, such
that the rectangle

= O((log [t])"),

Rla):={seC:a<R(s) <2, |S(s)| <T}

contains no zeros of ((s). Thirdly, ((2s)/((s) has a removable singularity at s = 1.]
(¢) [6] By applying the Tauberian result (stated at the beginning) to f(n) = 1 + A(n) show that

> An) =

and deduce that there is a number z, such that A\(n) changes sign at least once in the interval

(22, x], whenever z > .



(b) [12] Define the arithmetic function A(n) by setting A\(1) = 1 and
A ) = (1,
for any distinct primes pq, ..., pg.

Using the facts below, and starting from the formula

1 [T ((2s) ds
ZA (z=n) 27”/0 C(s)x+1s(3+1) (c>1),

n<33 —100

which you may also use without proof, show that

Z)\ (x —n) = o(z?).

n<x
[The following facts may be used without proof. Firstly, if 1 < R(s) <2 and |J(s)| > 2, then
¢(2s) 7
= O((log|t|)"),
2 —ol(g )

where t = (s). Secondly, for any given T > 0 there is a real number o < 1 depending on T, such

that the rectangle
Rla) ={seC:a<R(s) <2, ()| <T}

contains no zeros of ((s). Thirdly, ((2s)/((s) has a removable singularity at s = 1.]
Proof. Proceed similarly as 2015 Q2(b). Choose ¢ =1 + (logz)~'.

Bound the integral for s = ¢+ it and |t| > T fact 1 states ((2s)/¢(s) = O(log” |t|) for Rs = ¢ and
lt| >2 (1 <ec+1<2, fact 1), it follows that for any |¢t| > 2
C(28) . ds ; xl-i—logoc—i—l
x® < log' |t
o s < TR

c+1i00

/ Q(Qs)xsﬂ ds ds — O(xQT—l/Z).
erir C(8) s(s+1)

Thus, for any € > 0 there exists some 7T such that the above expression is less than e. Fix this

choice of T

< zft| 2,

and so for any T' > 2

To bound the integral between ¢ — i1 and ¢ + ¢T', we apply Cauchy’s residue theorem as follows.
Let @ = ar be the real number provided by fact 2. We move the contour of integration so as to
go from ¢ —iT to a— T, to a + 4T, and then to ¢+ i7T. By the second fact, {(s) doesn’t have any
zeros in this region, so the only singularity is at s = 1, which is told to be removable by fact 3.

To bound the integrals along the contour, by fact 2 the function ((2s)/((s) is continuous on the
contour, and so by fact 1 it is uniformly bounded by some constant M = M (T'). Hence,

c+iT 2 d c+1 _ a4l M 2
/ SED ds<<M/ oy « ME—— 5 EF
arir G(s)  s(s+1) log log z
and one can estimate the integral from ¢ — 7T to o — T similarly. The vertical integral is bounded

by
a+iT
2 d
/ <( S)x8+1 S ds < 2TM£UQ+1.
a—iT <(8> S(S + 1)
Thus for sufficiently large x (depending on T'), the integrals on the contour is bounded by e.
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(c) [6] By applying the Tauberian result (stated at the beginning) to f(n) = 1 + A(n) show that

S A(n) = ofx),

n<x

and deduce that there is a number zy such that A\(n) changes sign at least once in the interval

99
[105%> 7], whenever x > .

The Tauberian result: let f be a non-negative arithmetic function, n(z) = >, f(n) and

m(z) = [y n(t)de. If ni(x) ~ 2?/2 as & — oo then n(x) ~ .

Proof. f is nonnegative. Then ni(z) = > _ (x —n)(1 + A(n)) =, . (x —n) + o(a?) by (b).
Thus the Tauberian bound says - -

(@) =Y _(1+A(n) = z(1+0(1))

and the first part of this question follows.

By subtraction
z 99/100

Z A(n) = Z/\(n) - Z A(n) = o(x).

n=99z,/100 n=1

In particular, for sufficiently large x

Zz: A(n) < z/200.

n=99z,/100

If there isn’t any sign change, then | >/ g9, /100 A(n)| > /200 which is a contradiction.
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Good luck!
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