
Analytic Number Theory Class 4

- Today: 2017Q1, 2015Q3, 2014Q3(b,c)
- Did you receive solutions of the 2019 paper?
- Email wangr@maths.ox.ac.uk if there are any queries related to the notes.
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2017, Q1
(a) Df (s) =

∑∞
n=1 f(n)n−s.

(b) [16] Let f(n) = (−1)n+1.
Show that Df (s) defines a holomorphic function for <s > 0.
Give an expression for Df (s) in terms of the Riemann ζ-function, valid when <s > 1.
Hence, or otherwise, prove that ζ(s) extends to a meromorphic function on <s > 0 and that it has
no real zeros on the segment (0, 1).
(c) [8] Now let f be the multiplicative function for which f(2) = −2, f(p) = 1 when p is an odd
prime and f(pj) = 0 whenever p is a prime and j ≥ 2. Assuming the Riemann hypothesis and any
facts about ζ you need, show that Df (s) extends to a holomorphic function on <s > 1

4
.

Proof. By the mean value theorem.

Df (s) =
∞∑
n=1

(−1)n+1n−s = 1− 2−s + ... = −
∑
k

∫ 2k

2k−1
sy−s−1dy.

To bound the RHS: ∫ 2k

2k−1
sy−s−1dy ≤ s(2k − 1)−<s−1

which is summable uniformly in compact sets of <s > 0, and so the series −
∑

k

∫ 2k

2k−1 sy
−s−1dy is

uniformly convergent. It follows from complex analysis that Df (s) defines a holomorphic function
for <s > 0.

Note that for <s > 1,

ζ(s) =
∞∑
n=1

n−s

2−sζ(s) =
∞∑
n=1

(2n)−s.

ζ(s)− 21−sζ(s) = Df (s).

The above identity yields

ζ(s) = Df (s)(1− 21−s)−1 for <s > 1.

Since Df (s) and 1−21−s are holomorphic on <s > 0, the RHS is meromorphic on <s > 0. Hence, ζ
extends to a meromorphic function on <s > 0. To show the final claim, note that (1− 21−s)−1 6= 0
and Df (s) > 1− 2−s > 0 on (0, 1).

“Or otherwise”: alternatively, use Chapter 4 lecture notes.
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(c) [8] Now let f be the multiplicative function for which f(2) = −2, f(p) = 1 when p is an odd
prime and f(pj) = 0 whenever p is a prime and j ≥ 2. Assuming the Riemann hypothesis and any
facts about ζ you need, show that Df (s) extends to a holomorphic function on <s > 1

4

Proof. By multiplicativity,

Df (s) = (1− 2−s+1)
∏
p≥3

(1 + p−s).

Since 1− p−2s = (1 + p−s)(1− p−s), ζ(s) =
∏

p(1 + p−s + p−2s + ...) =
∏

p(1− p−s)−1,

Df (s) =
1− 2−s+1

1 + 2−s

∏
p

(1− p−2s)
∏
p

(1− p−s)−1 =
1− 2−s+1

1 + 2−s
ζ(s)

ζ(2s)
.

- By RH, all zeros of ζ(2s) are on the line s = 1/4, so ζ(2s) 6= 0 on <s > 1/4.
- ζ(s)(1− 2−s+1) is entire since ζ(s) has a simple pole at s = 1 and 1− 2−s+1 = 0 at s = 1.
- 1 + 2−s has no zeros on <s > 1/4.
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2015, Q3
(a) [5] Write down, without proof, the value of the integral

1

2πi

∫ c+i∞

c−i∞

xs

s(s+ 1)
ds,

where c and x are positive real numbers. Show that∑
n≤x

1 + Λ(n)

n

(
1− n

x

)
=

1

2πi

∫ c+i∞

c−i∞

(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)
ds

for any real c > 0. (You need not justify the interchange of summation and integration.)
(b) [14] Prove that ∑

n≤x

1 + Λ(n)

n

(
1− n

x

)
− 2 log x→ −2

as x→∞.
[The following facts may be used without proof. Firstly, if s = σ + it with 1 ≤ σ ≤ 2 and |t| ≥ 2,
then

ζ(s) = O(log |t|), ζ ′(s) = O(log2 |t|) and
1

ζ(s)
= O((log |t|)7).

Secondly, for any given T > 0 there is a real number α < 1 depending on T , such that the rectangle

R(α) := {s ∈ C : α ≤ <(s) ≤ 2, |=(s)| ≤ T}

contains no zeros of ζ(s). Thirdly, the function(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)

has a double pole at s = 0 with residue 2(log x− 1).]
(c) [6] Deduce that ∑

n≤x

Λ(n)

n
− log x→ −γ

as x→∞, where γ is Euler’s constant.
[You may assume without proof that∑

n≤x

n−1 = log x+ γ +O(x−1)

for x ≥ 1, and that ψ(x) ∼ x.]
Note re. fact 2 zero-free region (for both this question and Q3 2014): there seem to be different
versions either saying α > 0 or α < 1. The former assumption doesn’t exclude the possibility that
α > 1 which is used to bound the integral on the vertical path.
I think it’s safe to use α < 1 by mentioning the classical zero-free region (or any other stronger
results) without proofs. It might also be okay to assume so as ζ(s) has no zeros on <s ≥ 1 is the
well-known PNT.
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(a) [5] Write down, without proof, the value of the integral

1

2πi

∫ c+i∞

c−i∞

xs

s(s+ 1)
ds,

where c and x are positive real numbers. Show that∑
n≤x

1 + Λ(n)

n

(
1− n

x

)
=

1

2πi

∫ c+i∞

c−i∞

(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)
ds

for any real c > 0. (You need not justify the interchange of summation and integration.)
Proof. We have

1

2πi

∫ c+i∞

c−i∞

xs

s(s+ 1)
ds =

{
0 if x ≤ 1;

1− x−1 otherwise.

Can be clarified using results from Chapter 8 notes.
Note that ζ(s) =

∑∞
n=1 n

−s −ζ ′(s)/ζ(s) =
∑∞

n=1 Λ(n)n−s for <s > 1. Use termwise integration
and the identity stated at the beginning:

1

2πi

∫ c+i∞

c−i∞

(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)
ds =

∞∑
n=1

1

2πi

∫ c+i∞

c−i∞

1 + Λ(n)

n

(x/n)s

s(s+ 1)
ds

=
∑
n≤x

1 + Λ(n)

n

(
1− n

x

)
.
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(b) [14] Prove that ∑
n≤x

1 + Λ(n)

n

(
1− n

x

)
− 2 log x→ −2

as x→∞.
[The following facts may be used without proof. Firstly, if s = σ + it with 1 ≤ σ ≤ 2 and |t| ≥ 2,
then

ζ(s) = O(log |t|), ζ ′(s) = O(log2 |t|) and
1

ζ(s)
= O((log |t|)7).

Secondly, for any given T > 0 there is a real number α < 1 depending on T , such that the rectangle

R(α) := {s ∈ C : α ≤ <(s) ≤ 2, |=(s)| ≤ T}

contains no zeros of ζ(s). Thirdly, the function(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)

has a double pole at s = 0 with residue 2(log x− 1).]
Proof. We choose c = (log x)−1. By the previous part, we have the identity∑

n≤x

1 + Λ(n)

n

(
1− n

x

)
=

1

2πi

∫ c+i∞

c−i∞

(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)
ds.

First, since ζ(s) = O(log |t|) and ζ ′(s)/ζ(s) = O(log9 |t|) for <s = c and |t| > 2 (1 < c + 1 < 2,
fact 1), it follows that for any |t| > 2(

ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)
� log9 |t|x

log x

|t|2
� |t|−3/2,

and so for any T > 2 ∫ c+i∞

c+iT

(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)
ds = O(T−1/2).

Thus, for any ε > 0 there exists some T such that the above expression is less than ε. Fix this
choice of T .
To bound the integral between c− iT and c + iT , we apply Cauchy’s residue theorem as follows.
Let α = αT be the real number provided by fact 2. We move the contour of integration so as to go
from c− iT to α− 1− iT , to α− 1 + iT , and then to c+ iT . By the second fact, ζ(s+ 1) doesn’t
have any zeros in this region, so the only pole is at s = 0, whose residue 2(log x− 1) by fact 3.

To bound the integrals along the contour, by fact 2 the function
(
ζ(s+ 1)− ζ′(s+1)

ζ(s+1)

)
is continuous

on the contour, and so by fact 1 it is uniformly bounded by some constant M = M(T ). Hence,∫ c+iT

α−1+iT

(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)
ds�M

∫ c

α−1
xydy �M

xc − xα−1

log x
<

eM

log x

and one can estimate the integral from c − iT to α − 1 − iT similarly. The vertical integral is
bounded by ∫ α−1+iT

α−1−iT

(
ζ(s+ 1)− ζ ′(s+ 1)

ζ(s+ 1)

)
xs

s(s+ 1)
ds� 2TMxα−1.

Thus for sufficiently large x (depending on T ), the integrals on the contour is bounded by ε.
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(c) Deduce that ∑
n≤x

Λ(n)

n
− log x→ −γ

as x→∞, where γ is Euler’s constant.
[You may assume without proof that∑

n≤x

n−1 = log x+ γ +O(x−1)

for x ≥ 1, and that ψ(x) ∼ x.]

Proof. Substitute all the identities. Recall that by (b)∑
n≤x

1 + Λ(n)

n

(
1− n

x

)
− 2 log x→ −2

as x→∞. ∑
n≤x

1 + Λ(n)

n

(
1− n

x

)
=
∑
n≤x

Λ(n)

n
+
∑
n≤x

n−1 − 1−
∑
n≤x

Λ(n)x−1.

By the limits provided, ∑
n≤x

Λ(n)

n
+ log x+ γ − 2− 2 log x→ −2

as x→∞.
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2014, Q3
Let f(n) be a non-negative arithmetic function and write

η(x) =
∑
n≤x

f(n) and η1(x) =

∫ x

0

η(t)dt.

You may assume in the rest of the question that if η1(x) ∼ x2/2 as x→∞ then η(x) ∼ x.
(a) Not covered in the current course.
(b) [12] Define the arithmetic function λ(n) by setting λ(1) = 1 and

λ(pe11 . . . pekk ) = (−1)e1+...+ek ,

for any distinct primes p1, . . . , pk.

Using the facts below, and starting from the formula∑
n≤x

λ(n)(x− n) =
1

2πi

∫ c+i∞

c−i∞

ζ(2s)

ζ(s)
xs+1 ds

s(s+ 1)
(c > 1),

which you may also use without proof, show that∑
n≤x

λ(n)(x− n) = o(x2).

[The following facts may be used without proof. Firstly, if 1 ≤ <(s) ≤ 2 and |=(s)| ≥ 2, then

ζ(2s)

ζ(s)
= O((log |t|)7),

where t = =(s). Secondly, for any given T > 0 there is a real number α < 1 depending on T , such
that the rectangle

R(α) := {s ∈ C : α ≤ <(s) ≤ 2, |=(s)| ≤ T}

contains no zeros of ζ(s). Thirdly, ζ(2s)/ζ(s) has a removable singularity at s = 1.]
(c) [6] By applying the Tauberian result (stated at the beginning) to f(n) = 1 + λ(n) show that∑

n≤x

λ(n) = o(x),

and deduce that there is a number x0 such that λ(n) changes sign at least once in the interval
[ 99
100
x, x], whenever x ≥ x0.
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(b) [12] Define the arithmetic function λ(n) by setting λ(1) = 1 and

λ(pe11 . . . pekk ) = (−1)e1+...+ek ,

for any distinct primes p1, . . . , pk.

Using the facts below, and starting from the formula∑
n≤x

λ(n)(x− n) =
1

2πi

∫ c+i∞

c−i∞

ζ(2s)

ζ(s)
xs+1 ds

s(s+ 1)
(c > 1),

which you may also use without proof, show that∑
n≤x

λ(n)(x− n) = o(x2).

[The following facts may be used without proof. Firstly, if 1 ≤ <(s) ≤ 2 and |=(s)| ≥ 2, then

ζ(2s)

ζ(s)
= O((log |t|)7),

where t = =(s). Secondly, for any given T > 0 there is a real number α < 1 depending on T , such
that the rectangle

R(α) := {s ∈ C : α ≤ <(s) ≤ 2, |=(s)| ≤ T}
contains no zeros of ζ(s). Thirdly, ζ(2s)/ζ(s) has a removable singularity at s = 1.]
Proof. Proceed similarly as 2015 Q2(b). Choose c = 1 + (log x)−1.

Bound the integral for s = c+ it and |t| > T : fact 1 states ζ(2s)/ζ(s) = O(log7 |t|) for <s = c and
|t| > 2 (1 < c+ 1 < 2, fact 1), it follows that for any |t| > 2

ζ(2s)

ζ(s)
xs+1 ds

s(s+ 1)
� log7 |t|x

1+log x+1

|t|2
� x|t|−3/2,

and so for any T > 2 ∫ c+i∞

c+iT

ζ(2s)

ζ(s)
xs+1 ds

s(s+ 1)
ds = O(x2T−1/2).

Thus, for any ε > 0 there exists some T such that the above expression is less than ε. Fix this
choice of T .

To bound the integral between c− iT and c + iT , we apply Cauchy’s residue theorem as follows.
Let α = αT be the real number provided by fact 2. We move the contour of integration so as to
go from c− iT to α− iT , to α+ iT , and then to c+ iT . By the second fact, ζ(s) doesn’t have any
zeros in this region, so the only singularity is at s = 1, which is told to be removable by fact 3.

To bound the integrals along the contour, by fact 2 the function ζ(2s)/ζ(s) is continuous on the
contour, and so by fact 1 it is uniformly bounded by some constant M = M(T ). Hence,∫ c+iT

α+iT

ζ(2s)

ζ(s)
xs+1 ds

s(s+ 1)
ds�M

∫ c

α

xy+1dy �M
xc+1 − xα+1

log x
<
eMx2

log x

and one can estimate the integral from c− iT to α− iT similarly. The vertical integral is bounded
by ∫ α+iT

α−iT

ζ(2s)

ζ(s)
xs+1 ds

s(s+ 1)
ds� 2TMxα+1.

Thus for sufficiently large x (depending on T ), the integrals on the contour is bounded by ε.
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(c) [6] By applying the Tauberian result (stated at the beginning) to f(n) = 1 + λ(n) show that∑
n≤x

λ(n) = o(x),

and deduce that there is a number x0 such that λ(n) changes sign at least once in the interval
[ 99
100
x, x], whenever x ≥ x0.

The Tauberian result: let f be a non-negative arithmetic function, η(x) =
∑

n≤x f(n) and

η1(x) =
∫ x
0
η(t)dt. If η1(x) ∼ x2/2 as x→∞ then η(x) ∼ x.

Proof. f is nonnegative. Then η1(x) =
∑

n≤x(x − n)(1 + λ(n)) =
∑

n≤x(x − n) + o(x2) by (b).
Thus the Tauberian bound says

η(x) =
∑
n≤x

(1 + λ(n)) = x(1 + o(1))

and the first part of this question follows.
By subtraction

x∑
n=99x/100

λ(n) =
x∑

n=1

λ(n)−
99x/100∑
n=1

λ(n) = o(x).

In particular, for sufficiently large x

x∑
n=99x/100

λ(n) < x/200.

If there isn’t any sign change, then |
∑x

n=99x/100 λ(n)| > x/200 which is a contradiction.
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Good luck!
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