
C3.3 Differentiable Manifolds

Problem Sheet 0: Solutions

Michaelmas Term 2019–2020

1. For a smooth map f : Rn → Rm (or between open subsets of Rn and Rm) we let dfp : Rn → Rm

denote the differential of f at p ∈ Rn. Since dfp is a linear map, we can identify it with a matrix: if

we write f = (f1, . . . , fm) and let (x1, . . . , xn) denote coordinates on Rn, then the matrix is ( ∂fi
∂xj

).

(a) Let f : R → R2 be given by f(t) = (t2, t3).

Calculate dft for any t ∈ R and show that dft is injective except at t = 0. Sketch the image

of f in R2.

We calculate

dft =

(

2t

3t2

)

.

This matrix always has rank 1 (i.e. is not the zero matrix in this case) if t 6= 0, and therefore dft

is injective except for t = 0.

The image of f is a classic cusp curve, where the cusp is at 0.

(b) Let f : R3 → R be given by f(x1, x2, x3) = x2
1 + x2

2 − x3.

Calculate dfx for any x ∈ R3 and show that dfx is surjective for all x ∈ R3.

We see that

dfx = (2x1 2x2 − 1) .

This matrix always has full rank (i.e. 1) because the last entry is never zero, and hence dfx is

surjective for all x ∈ R3.

(c) Let f : R3 → R3 be given by f(x1, x2, x3) = (x2x3, x3x1, x1x2).

Calculate dfx for any x ∈ R3 and show that dfx : R3 → R3 is not injective (or equivalently

not surjective) for any x ∈ R3.

We compute

dfx =







0 x3 x2

x3 0 x1

x2 x1 0






.

We see that det dfx = 0 for all x ∈ R3 and so dfx is neither injective nor surjective as it is not

invertible.

(d) Let Mn(R) be the n × n real matrices and let GL(n,R) be the set of invertible n × n real

matrices. Let f : GL(n,R) → R be given by f(A) = detA.

Calculate dfA for any A ∈ GL(n,R) as a map from Mn(R) to R and show that it is surjective

for all A ∈ GL(n,R).
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To compute dfA we see that

f(A+B)− f(A) = det(A+B)− detA = det(A(I +A−1B))− detA = detA(det(I +A−1B)− 1).

We then notice that

det(I +A−1B) = 1 + tr(A−1B) + o(‖B‖).

From here, we then use the definition of dfA as the unique linear map so that

‖f(A+B)− f(A)− dfA(B)‖

|B|
→ 0

as ‖B‖ → 0. In other words, we see that

f(A+B)− f(A) = detA tr(A−1B) + o(|B|)

and so

dfA(B) = detA tr(A−1B).

Taking B = cA for any c ∈ R we see that

dfA(cA) = detA tr(cI) = nc detA.

Since detA 6= 0 we can choose c as we wish to ensure dfA is surjective onto R for any A.

2. Show that Rn and Sn = {(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + . . . + x2

n+1 = 1} are second countable and

Hausdorff with respect to their natural topologies.

To show that M = Rn or Sn is Hausdorff, suppose x, y ∈ M are distinct. Then xi 6= yi for some i.

If xi < yi, pick c ∈ (xi, yi) and set

U =
{

z ∈ Sn : zi < c
}

, V =
{

z ∈ Sn : zi > c
}

.

Then U, V are disjoint open sets in M with x ∈ U , y ∈ V . If xi > yi, swap U, V . Thus M is

Hausdorff. [All we are doing here, of course, is a special case of showing that metric spaces are

Hausdorff.]

To see that Rn is second countable, note that

B =
{

(a1, b1)× · · · × (an, bn) : ai, bi ∈ Q, ai < bi
}

is a countable basis for its topology. Another option would be

B = {Br(x) : x ∈ Qn, r ∈ Q+}

where Br(x) denotes the Euclidean ball of radius r and centre x.

Hence, if B is a countable basis for Rn, then
{

U ∩Sn : U ∈ B
}

is a countable basis for the topology

of Sn, so Sn is also second countable. [This just says that subspaces of second countable spaces are

second countable.]

3. Let N = (0, 0, 1) ∈ S2 and S = (0, 0,−1) ∈ S2 and define UN = S2 \ {N} and US = S2 \ {S}.

Let ϕN : UN → R2 and ϕS : US → R2 be given by

ϕN (x1, x2, x3) =
(x1, x2)

1− x3

and ϕS(x1, x2, x3) =
(x1, x2)

1 + x3

.

(a) By constructing explicit inverses, or otherwise, show that ϕN and ϕS are homeomorphisms

(i.e. continuous bijections with continuous inverses).
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We have explicit inverses:

ϕ−1

N (y1, y2) =
(2y1, y

2
1 + y22 − 1)

1 + y21 + y22

and

ϕ−1

S (y1, y2) =
(2y1, 1− y21 − y22)

1 + y21 + y22
.

Both ϕN , ϕS and their inverses are clearly continuous, so they are homeomorphisms.

Let f = ϕS ◦ ϕ−1

N defined on ϕN (UN ∩ US).

(b) Calculate f and show that it defines a diffeomorphism of R2 \{0} (i.e. it is a smooth map with

smooth inverse).

We see that UN ∩US = S2 \{N,S} and ϕN (UN ∩US) = R2 \{0} = ϕS(UN ∩US). We may compute

that f = ϕS ◦ ϕ−1

N : R2 \ {0} → R2 \ {0} is

f(y1, y2) =
(y1, y2)

y21 + y22
.

This is smooth, because we are excluding the origin from R2, and f = f−1, so it is a diffeomorphism.

(c) Calculate the differential dfy at any point y ∈ R2 \ {0}. Calculate det dfy, viewed as a matrix

with respect to the standard basis of R2, and show that it is never zero.

We may calculate that

dfy =
1

(y21 + y22)
2

(

y22 − y21 −2y1y2

−2y1y2 y21 − y22

)

.

We see that

det dfy = −
1

(y21 + y22)
2
< 0.

4. (a) Define f : R2 → R2 by f(x1, x2) = (ex1 cosx2, e
x1 sinx2).

Show that f is a local diffeomorphism (i.e. given any point x ∈ R2 there is an open set U ∋ x

and V ∋ f(x) so that f : U → V is a diffemorphism). Is f a diffeomorphism?

We calculate that dfx is given by the matrix

dfx =

(

ex1 cosx2 −ex1 sinx2

ex1 sinx2 ex1 cosx2

)

.

We quickly calculate that det dfx = e2x1 > 0 so dfx is invertible for all x ∈ R2. Therefore, by the

Implicit Function Theorem, f is a local diffeomorphism.

We see that f is not a diffeomorphism because f(x1, x2 + 2π) = f(x1, x2) for all x1, x2, so f is not

injective. It is also not surjective because f(x1, x2) is never zero as |f(x1, x2)|
2 = e2x1 > 0.

(b) Define f : R2 → R by f(x1, x2) = x3
1 + x3

2 + ex1+x2 .

Show that there is a smooth function g(x1) so that f(x1, x2) = 0 if and only if x2 = g(x1).

Deduce that f−1(0) is a manifold.

We calculate that
∂f

∂x2

= 3x2
2 + ex1+x2 > 0

for all x1, x2. So, by the Implicit Function Theorem, there is a smooth function g(x1) so that

f(x1, x2) = 0 if and only if x2 = g(x1).

Therefore f−1(0) = {(x, g(x)) : x ∈ R}. We may therefore take a single chart U = f−1(0) and

ϕ(x, g(x)) = x. Then ϕ : f−1(0) → R is continuous and has inverse ϕ−1(x) = (x, g(x)). The

transition function condition is trivially satisfied, since the only transition function is ϕ ◦ ϕ−1 = id

which is obviously a diffeomorphism. Hence f−1(0) is a 1-dimensional manifold.
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