C3.3 Differentiable Manifolds

Problem Sheet 2

Michaelmas Term 2019–2020

- 1. Show that the following smooth maps are immersions. Are they embeddings? Justify your answer in each case.
 - (a) $f: \mathcal{S}^1 \to \mathbb{R}^2$ given by

 $f(\cos\theta, \sin\theta) = (\sin 2\theta \cos\theta, \sin 2\theta \sin\theta)$

(b) $f: \mathcal{S}^2 \to \mathbb{R}^4$ given by

$$f(x_1, x_2, x_3) = \frac{(x_1, x_1x_3, x_2, x_2x_3)}{1 + x_3^2}$$

(c) $f: \mathbb{RP}^2 \to \mathbb{R}^5$ given by

$$f([(x_1, x_2, x_3)]) = \left(\frac{x_2 x_3}{\sqrt{3}}, \frac{x_3 x_1}{\sqrt{3}}, \frac{x_1 x_2}{\sqrt{3}}, \frac{x_1^2 - x_2^2}{2\sqrt{3}}, \frac{1}{6}(x_1^2 + x_2^2 - 2x_3^2)\right)$$

for $(x_1, x_2, x_3) \in S^2$.

2. Define $f: \mathcal{S}^3 \to \mathcal{S}^2$ by

$$f(x_0, x_1, x_2, x_3) = \left(x_0^2 + x_1^2 - x_2^2 - x_3^2, 2x_0x_3 + 2x_1x_2, 2x_1x_3 - 2x_0x_2\right).$$

- (a) Show that $f^{-1}{y} \subseteq S^3$ is a circle for all $y \in S^2$.
- (b) Show that f is a submersion.
- 3. (a) Show that an *n*-dimensional manifold is parallelizable if and only if it has *n* vector fields which are linearly independent (at every point).
 - (b) Deduce that S^3 is parallelizable.
- 4. Define a vector field on the upper-half plane H^2 by

$$X = \frac{1}{x_2}\partial_1 + x_2\partial_2.$$

- (a) Compute the integral curves and hence the flow of X.
- (b) Use the definition of the Lie derivative to compute $\mathcal{L}_X \partial_1$ and $\mathcal{L}_X \partial_2$.
- (c) Compute $[X, \partial_1]$ and $[X, \partial_2]$ and verify that $\mathcal{L}_X \partial_1 = [X, \partial_1]$ and $\mathcal{L}_X \partial_2 = [X, \partial_2]$.
- 5. Let V be a vector space of dimension n and let $\alpha \in \Lambda^k V^*$. Consider the linear map $A_\alpha : \Lambda^{n-k} V^* \to \Lambda^n V^*$ defined by $A_\alpha(\beta) = \alpha \wedge \beta$.
 - (a) Show that if $\alpha \neq 0$, then $A_{\alpha} \neq 0$.
 - (b) Prove that $\alpha \mapsto A_{\alpha}$ is an isomorphism from $\Lambda^{k}V^{*}$ to the vector space $\operatorname{Hom}(\Lambda^{n-k}V^{*}, \Lambda^{n}V^{*})$ of linear maps from $\Lambda^{n-k}V^{*}$ to $\Lambda^{n}V^{*}$. So, if we choose an isomorphism $\Lambda^{n}V^{*} \cong \mathbb{R}$, then $\Lambda^{k}V^{*} \cong (\Lambda^{n-k}V^{*})^{*}$.

- 6. Let B^2 be the unit ball in \mathbb{R}^2 and let H^2 be the upper-half plane.
 - (a) Define $f: B^2 \to H^2$ by

$$f(y_1, y_2) = \frac{(2y_1, 1 - y_1^2 - y_2^2)}{y_1^2 + (y_2 + 1)^2}.$$

Show that f is a diffeomorphism. [Hint: What is $f(f(y_1, y_2))$?]

- (b) Compute $f_*(\partial_1)$ and $f_*(\partial_2)$.
- (c) Compute

$$f^*\left(\frac{\mathrm{d}x_1\wedge\mathrm{d}x_2}{x_2^2}\right).$$