C3.3 Differentiable Manifolds

Problem Sheet 3

Michaelmas Term 2019-2020

1. Let $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ be coordinates on $\mathcal{S}^{3} \subseteq \mathbb{R}^{4}$. Let

$$
X=-x_{1} \partial_{0}+x_{0} \partial_{1}-x_{3} \partial_{2}+x_{2} \partial_{3}
$$

restricted to \mathcal{S}^{3} and

$$
\omega=-x_{2} \mathrm{~d} x_{0}+x_{3} \mathrm{~d} x_{1}+x_{0} \mathrm{~d} x_{2}-x_{1} \mathrm{~d} x_{3} .
$$

(a) Compute the flow of X and hence $\mathcal{L}_{X} \omega$ using the definition of Lie derivative.
(b) Compute $\mathrm{d} \omega$ and $\mathrm{d}\left(i_{X} \omega\right)$ and hence compute $\mathcal{L}_{X} \omega$ using Cartan's formula.
2. A Riemann surface is a 2-dimensional manifold with an atlas $\left\{\left(U_{i}, \varphi_{i}\right): i \in I\right\}$ whose transition maps $\varphi_{j} \circ \varphi_{i}^{-1}$ for $i, j \in I$ are maps from an open set $\varphi_{i}\left(U_{i} \cap U_{j}\right)$ of $\mathbb{C}=\mathbb{R}^{2}$ to another open set $\varphi_{j}\left(U_{i} \cap U_{j}\right)$ which are holomorphic and invertible. Show that a Riemann surface is orientable.
3. Show that a product of orientable manifolds is orientable.
4. Let M be a manifold and let G act freely and properly discontinuously by diffeomorphisms f_{g} for $g \in G$ on M. Let $\pi: M \rightarrow M / G$ be the projection map.
(a) Suppose that M / G is orientable, so that there is a volume form Ω on M / G. Show that $\Upsilon=\pi^{*} \Omega$ is a volume form on M such that $f_{g}^{*} \Upsilon=\Upsilon$ for all $g \in G$.
(b) Suppose that Υ is a volume form on M such that $f_{g}^{*} \Upsilon=\Upsilon$ for all $g \in G$. Show that there is a volume form Ω on M / G such that $\pi^{*} \Omega=\Upsilon$, and hence that M / G is orientable.
(c) Is $\mathcal{S}^{2} \times \mathbb{R}^{2}$ orientable? What about $\mathbb{R}^{2} \times \mathbb{R}^{2}$?
5. Define $f:(0,1) \times(0,2 \pi) \rightarrow B^{2}$, where B^{2} is the unit ball centred at 0 in \mathbb{R}^{2}, by

$$
f(r, \theta)=(r \cos \theta, r \sin \theta)
$$

and let $\left(y_{1}, y_{2}\right)$ be coordinates on B^{2}. Let $B_{s} \subseteq B^{2}$ denote the open ball centred at 0 of radius s, for $s \in(0,1)$, with its standard orientation. Let $k \in\{1,-1\}$.
(a) Compute

$$
f^{*}\left(4\left(1-y_{1}^{2}-y_{2}^{2}\right)^{2 k} \mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}\right)
$$

(b) Hence, or otherwise, calculate

$$
\int_{B_{s}} 4\left(1-y_{1}^{2}-y_{2}^{2}\right)^{2 k} \mathrm{~d} y_{1} \wedge \mathrm{~d} y_{2}
$$

in each of the cases $k=1$ and $k=-1$. What happens as $s \rightarrow 1$ in each case?
6. Use Stokes Theorem for manifolds with boundary to prove the following results.
(a) Let $\gamma: \mathcal{S}^{1} \rightarrow \mathbb{R}^{2}$ be an embedding and let D be the region in \mathbb{R}^{2} bounded by $C=\gamma\left(\mathcal{S}^{1}\right)$. Let $u_{1}, u_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be smooth functions. Then

$$
\int_{C} u_{1} \mathrm{~d} x_{1}+u_{2} \mathrm{~d} x_{2}=\int_{D}\left(\frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}
$$

(b) Let V be an open subset of \mathbb{R}^{3} with compact closure and smooth boundary $S=\partial V$. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be smooth. Then

$$
\int_{V} \operatorname{div} F \mathrm{~d} V=\int_{S} F \cdot \mathrm{~d} S
$$

(c) Let Σ be a compact oriented surface in \mathbb{R}^{3} with smooth boundary $\Gamma=\partial \Sigma$. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be smooth. Then

$$
\int_{\Sigma} \operatorname{curl} F \cdot \mathrm{~d} \Sigma=\int_{\Gamma} F \cdot \mathrm{~d} \Gamma .
$$

