C3.3 Differentiable Manifolds

Problem Sheet 4

Michaelmas Term 2019–2020

- 1. Let L be a compact, oriented k-dimensional manifold, let N be an n-dimensional manifold with $n \ge k$ and let M be a compact, oriented (k + 1)-dimensional manifold with boundary $\partial M = L$.
 - (a) Let $f: L \to N$ be a smooth map. Show that, by integrating $f^*\alpha$ on L where $\alpha \in \mathcal{Z}^k(N)$, that f defines a linear map $L_f: H^k(N) \to \mathbb{R}$.
 - (b) Let $g: M \to N$ be a smooth map such that $g|_L = f$. Show using Stokes Theorem that $L_f = 0$.
- 2. Let ξ be the restriction to S^1 of the 1-form

$$x_1 \mathrm{d}x_2 - x_2 \mathrm{d}x_1$$

- on \mathbb{R}^2 . Writing $T^n = \mathcal{S}^1 \times \cdots \times \mathcal{S}^1$, let $\pi_i : T^n \to \mathcal{S}^1$ be the projection onto the *i*th factor.
- (a) Show that the de Rham cohomology classes $\pi_i^*[\xi]$ for i = 1, ..., n are linearly independent in $H^1(T^n)$.
- (b) Let n > 1 and let $f : \mathcal{S}^n \to T^n$ be a smooth map. Show that the degree of f is zero.
- 3. The quaternions consist of the four-dimensional associative algebra \mathbb{H} of expressions $q = x_0 + ix_1 + jx_2 + kx_3$ where $x_i \in \mathbb{R}$ and i, j, k satisfy the relations

$$i^2 = j^2 = k^2 = -1$$
, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.

- (a) Show that $f(q) = q^2$ defines a smooth map from $\mathbb{R}^4 \cup \{\infty\} \cong S^4$ to itself.
- (b) How many solutions are there to the equation $q^2 = 1$?
- (c) What is the degree of f?
- (d) How many solutions are there to the equation $q^2 = -1$?
- 4. Let

$$X = a_1\partial_1 + a_2\partial_2$$

be a vector field on \mathbb{R}^2 where $a_1, a_2 : \mathbb{R}^2 \to \mathbb{R}$ are smooth such that X is a Killing field on \mathbb{R}^2 with the Euclidean metric $dx_1^2 + dx_2^2$.

(a) Solve the Killing equation

$$\mathcal{L}_X(\mathrm{d}x_1^2 + \mathrm{d}x_2^2) = 0$$

for a_1 and a_2 .

(b) Show that the flow of X is

$$\phi_t^X(\mathbf{x}) = A_t \mathbf{x} + \mathbf{c}_t$$

where A_t is a rotation and \mathbf{c}_t is a constant vector in \mathbb{R}^2 .

5. Let B^2 be the unit ball in \mathbb{R}^2 and let

$$g = 4 \frac{\mathrm{d}y_1^2 + \mathrm{d}y_2^2}{(1 - (y_1^2 + y_2^2))^2}$$

- (a) Let $L \in (0,1)$ and let $\alpha : [0,L] \to B^2$ be the curve $\alpha(t) = (t,0)$. Calculate the length $L(\alpha)$ of the curve α and show that $L(\alpha) \to \infty$ as $L \to 1$.
- (b) Show that $\alpha(t) = (\tanh \frac{t}{2}, 0)$ is a normalised geodesic through (0, 0).
- (c) Let H^2 be the upper half-plane in \mathbb{R}^2 with the Riemannian metric

$$h = \frac{\mathrm{d}x_1^2 + \mathrm{d}x_2^2}{x_2^2}$$

Let $f: B^2 \to H^2$ be given by

$$f(y_1, y_2) = \frac{(2y_1, 1 - y_1^2 - y_2^2)}{y_1^2 + (y_2 + 1)^2}$$

as in Problem Sheet 2. Show that $f: (B^2, g) \to (H^2, h)$ is an isometry.

6. Consider (S^{2n+1}, g) where g is the standard round metric and let E be the vector field on S^{2n+1} given by

$$E = \sum_{j=1}^{n+1} x_{2j-1} \partial_{2j} - x_{2j} \partial_{2j-1}.$$

Let $\pi: \mathcal{S}^{2n+1} \to \mathbb{CP}^n$ be the projection map.

- (a) Show that $\pi_*(E) = 0$ and that E is a Killing field on (\mathcal{S}^{2n+1}, g) .
- (b) For $z \in \mathcal{S}^{2n+1}$ let

$$H_z = \{ X \in T_z \mathcal{S}^{2n+1} : g(X, E(z)) = 0 \}.$$

Show that $\Phi_z = d\pi_z : H_z \to T_{\pi(z)} \mathbb{CP}^n$ is an isomorphism. [You may assume that π is a submersion.]

(c) Define h on \mathbb{CP}^n by

$$h_{\pi(z)}(X,Y) = g_z(\Phi_z^{-1}(X), \Phi_z^{-1}(Y)).$$

Show that h is a well-defined Riemannian metric on \mathbb{CP}^n .