C2.7 Category theory: problem sheet 1

Starred questions are optional.

- 1. (a) Let (X, \leq) be a poset (i.e. a partially ordered set). Show that one can make it into a category such that for any $x_1, x_2 \in X$ the set $\operatorname{Hom}(x_1, x_2)$ has a single element if $x_1 \leq x_2$ and is empty otherwise.
 - (b) Let [n] be the category associated to the poset of integers $\{0, 1, ..., n\}$ with the usual ordering. Given another category C describe the functor category Fun([n], C).
- 2. Given a group G consider the category */G with one object * and Hom(*,*) = G.
 - (a) How can we describe functors $*/G_1 \to */G_2$ and natural transformations between such functors in group-theoretic terms?
 - (b) Describe functors $*/\mathbb{Z} \to */G$. What are natural transformations between two such functors (for fixed G)?
- 3. Recall that an equivalence between categories \mathcal{C} and \mathcal{D} is a pair of functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms relating their compositions to identity functors on \mathcal{C} and \mathcal{D} .

Show that the linear duality functor $\operatorname{Hom}_{\operatorname{Vect}_{k}^{fd}}(-,k)$ defines an equivalence

$$\operatorname{Vect}_k^{fd} \to (\operatorname{Vect}_k^{fd})^{op}$$

from the category $\operatorname{Vect}_k^{fd}$ of finite-dimensional vector spaces over a field k to its opposite.

- 4. Recall that a groupoid is a category in which every morphism is invertible. A contractible category is a groupoid \mathcal{C} such that any two objects of \mathcal{C} are isomorphic and End(c) is the trivial group for some $c \in \mathcal{C}$. Show that for any two objects x, y of a contractible category \mathcal{C} the set Hom(x, y) consists of a single element, and that \mathcal{C} is equivalent to a discrete category with a single object.
- 5. (*) Given a set of groups $\{G_i\}_{i \in I}$ indexed by I one has the category $\sqcup_{i \in I} * / G_i$ with I its set of objects, endomorphisms of $i \in I$ given by G_i , and no other morphisms. Show that any (small) groupoid is equivalent to a category of this form.
- 6. (*) Show that associating to a group its centre cannot be made into a functor $\text{Grp} \to \text{Ab}$.