Infinite groups 2018: Sheet 2

October 8, 2018

Exercise 1. 1. Prove that if S and \overline{S} are two finite generating sets of G, then the word metrics dist_S and dist_{\overline{S}} on G are bi-Lipschitz equivalent, i.e. there exists L > 0 such that

$$\frac{1}{L}\operatorname{dist}_{S}(g,g') \leqslant \operatorname{dist}_{\bar{S}}(g,g') \leqslant L\operatorname{dist}_{S}(g,g'), \forall g,g' \in G.$$
(1)

2. Prove that an isomorphism between two finitely generated groups is a bi-Lipschitz map when the two groups are endowed with word metrics.

Exercise 2. Consider the integer Heisenberg group

$$H_{2n+1}(\mathbb{K}) = \left\{ \begin{pmatrix} 1 & x_1 & x_2 & \dots & \dots & x_n & z \\ 0 & 1 & 0 & \dots & \dots & 0 & y_n \\ 0 & 0 & 1 & \dots & \dots & 0 & y_{n-1} \\ \vdots & \vdots & \ddots & \ddots & & \vdots & \vdots \\ 0 & 0 & \dots & \dots & 1 & 0 & y_2 \\ 0 & 0 & \dots & \dots & 0 & 1 & y_1 \\ 0 & 0 & \dots & \dots & 0 & 1 & y_1 \end{pmatrix} ; x_1, \dots, x_n, y_1, \dots, y_n, z \in \mathbb{Z} \right\}$$

Prove that $H_{2n+1}(\mathbb{Z})$ is nilpotent of class 2.

Exercise 3. The goal of this exercise is to prove that, given an arbitrary field \mathbb{K} , the group $\mathcal{U}_n(\mathbb{K})$ is nilpotent of class n-1.

Let $\mathcal{U}_{n,k}(\mathbb{K})$ be the subset of $\mathcal{U}_n(\mathbb{K})$ formed by matrices (a_{ij}) such that $a_{ij} = \delta_{ij}$ for j < i + k. Note that $\mathcal{U}_{n,1}(\mathbb{K}) = \mathcal{U}_n(\mathbb{K})$.

1. Prove that for every $k \ge 1$ the map

$$\begin{array}{lll} \varphi_k : \mathcal{U}_{n,k}(\mathbb{K}) & \to & \left(\mathbb{K}^{n-k}, +\right) \\ A = (a_{i,j}) & \mapsto & (a_{1,k+1}, a_{2,k+2}, \dots, a_{n-k,n}) \end{array}$$

is a homomorphism. Deduce that $(\mathcal{U}_{n,k}(\mathbb{K}))' \subset \mathcal{U}_{n,k+1}(\mathbb{K})$ and that $\mathcal{U}_{n,k+1}(\mathbb{K}) \lhd \mathcal{U}_{n,k}(\mathbb{K})$ for every $k \ge 1$.

2. Let E_{ij} be the matrix with all entries 0 except the (i, j)-entry, which is equal to 1. Consider the triangular matrix $T_{ij}(a) = I + aE_{ij}$.

Deduce from (1), using induction, that $\mathcal{U}_{n,k}$ is generated by the set

 $\{T_{ij}(a) \mid j \ge i+k, a \in \mathbb{R}\}.$

3. Prove that for every three distinct numbers i, j, k in $\{1, 2, ..., n\}$

$$[T_{ij}(a), T_{jk}(b)] = T_{ik}(ab), \ [T_{ij}(a), T_{ki}(b)] = T_{kj}(-ab),$$

and that for all quadruples of distinct numbers i, j, k, ℓ ,

$$[T_{ij}(a), T_{k\ell}(b)] = I$$

4. Prove that $C^k \mathcal{U}_n(\mathbb{K}) \leq \mathcal{U}_{n,k+1}(\mathbb{K})$ for every $k \geq 0$. Deduce that $\mathcal{U}_n(\mathbb{K})$ is nilpotent.

Exercise 4. Which of the permutation groups S_n are nilpotent? Which of these groups are solvable?

Exercise 5. Let D_{∞} be the infinite dihedral group. Recall that this group can be realized as the group of isometries of \mathbb{R} generated by the symmetry $s : \mathbb{R} \to \mathbb{R}, s(x) = -x$ and the translation $t : \mathbb{R} \to \mathbb{R}, t(x) = x + 1$, and as noted before $D_{\infty} = \langle t \rangle \rtimes \langle s \rangle$.

- 1. Give an example of two elements a, b of finite order in D_{∞} such that their product ab is of infinite order.
- 2. Find Tor D_{∞} .
- 3. Is D_{∞} a nilpotent group ? Is D_{∞} polycyclic ?
- 4. Are any of the finite dihedral groups D_{2n} nilpotent?

Exercise 6. Let $\mathcal{T}_n(\mathbb{K})$ be the group of invertible upper-triangular $n \times n$ matrices with entries in a field \mathbb{K} .

- 1. Prove that $\mathcal{T}_n(\mathbb{K})$ is a semidirect product of its nilpotent subgroup $\mathcal{U}_n(\mathbb{K})$ introduced in Exercise Sheet 2, and the subgroup of diagonal matrices.
- 2. Prove that, if \mathbb{K} has zero characteristic, the subgroup of $\mathcal{T}_n(\mathbb{K})$ generated by $I + E_{12}$ and by the diagonal matrix with $(-1, 1, \ldots, 1)$ on the diagonal is isomorphic to the infinite dihedral group D_{∞} . Deduce that $\mathcal{T}_n(\mathbb{K})$ is not nilpotent.