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1. Let A be an abelian category.

(a) [6 marks] (i) Define the kernel of a morphism f : M → N in A.
[2pt] A morphism ι : K →M exhibits K as the kernel of f if fι = 0 and for (B)
all ι′ : K ′ → M with fι′ = 0 there ∃ a unique factorisation of ι′ through ι.
I.e. ι′ = ιg for some unique map g : K ′ → K.

(ii) Define the notion of a short exact sequence in an abelian category.
[2pt] A sequence 0 → A → B → C → 0 is exact if A → B exhibits A as the (B)
kernel of B → C, and B → C exhibits C as the cokernel of A→ B.

(iii) Let R be a ring, and let us assume that A is the category of R-modules.
Prove that, in that case, ker(f) = {x ∈M | f(x) = 0}.
[2pt] Let K := {x ∈ M | f(x) = 0}. The inclusion ι : K → M satisfies fι = 0. (S)
Given ι′ : K ′ → M with fι′ = 0, then for every k′ ∈ K ′ we have ι′(k′) ∈ K.
The image of ι′ is therefore contained in K, and we get a factorisation
ι′ = ιg. The map ι is injective so if ι′ = ιg and ι′ = ιg′ we must have g = g′.
The factorisation is therefore unique.

From now on, we fix a ring R and assume that A = R-Mod is the category of R-modules.

(b) [8 marks] (i) Explain what is meant by a short exact sequence of chain complexes.
[1pt] A short exact sequence of chain complexes is a diagram of chain (B)
complexes 0 → A• → B• → C• → 0 such that for every n ∈ Z the sequence
0→ An → Bn → Cn → 0 is exact.

(ii) Given a short exact sequence of chain complexes 0→ P•
f•−→ Q•

g•−→ R• → 0, there is
an associated long exact sequence in homology; define the connecting homomorphism
∂ : Hn(R•)→ Hn−1(P•) and prove that it is well defined.
[4pt] Given x ∈ Rn representing a class [x] ∈ Hn(R•), pick a preimage y ∈ Qn (S)
of x. The element dy ∈ Qn−1 has the property that its image is zero
in Rn−1; it is therefore in the image of the map fn−1. We set ∂([x]) :=
[f−1

n−1(dy)]. We need to check that: (a) d(f−1
n−1(dy)) = 0 (b) The class [f−1

n−1(dy)]

is independent of the choice of preimage y of x (c) The class [f−1
n−1(dy)] is

independent of the choice of representative x in its homology class.
(a) Since fn−2 is injective, it’s enough to check that fn−2d(f−1

n−1(dy)) = 0. We

compute: fn−2d(f−1
n−1(dy)) = d(fn−1(f−1

n−1(dy))) = d(dy) = 0.
(b) Two preimages y, y′ ∈ Qn of x differ by an element fn(z) for some z ∈ Pn.
Replacing y by y′ has the effect of adding [f−1

n−1(d(fn(z)))] to [f−1
n−1(dy)]. But

[f−1
n−1(d(fn(z)))] = [f−1

n−1(fn−1(d(z)))] = [dz] = 0.
(c) It’s enough to show that when x = dx̂ for some x̂ ∈ Rn+1, the recipe for
∂ yields zero in Hn−1(P•). Pick a preimage ŷ ∈ Qn+1 of x̂, and set y := dŷ
(this is allowed by part (b)). Then ∂([dx̂]) = [f−1

n−1(ddŷ)] = 0.

(iii) Prove that

ker
(
∂ : Hn(R•)→ Hn−1(P•)

)
= im

(
Hn(Q•)→ Hn(R•)

)
.

[3pt] (im ⊂ ker): If [x] ∈ Hn(R•) is the image of [y] ∈ Hn(Q•), then ∂([x]) = (S)
[f−1

n−1(dy)] = 0 because dy = 0.

(ker ⊂ im): If ∂([x]) = [f−1
n−1(dy)] = 0, then f−1

n−1(dy) = dz for some z ∈ Pn.
The element y′ := y−fn(z) ∈ Qn is also a preimage of x, and satisfies dy′ = 0.
It therefore represents an element in Hn(Q•). By construction, [y′] 7→ [x].

(c) [5 marks] (i) Define the Tor groups Tor∗(−,−).
[1pt] Given a projective resolution P• → A, the Tor groups TorR∗ (A,B) are (B)
the homology groups of the complex P• ⊗R B.
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(ii) Given a short exact sequence of right R-modules 0 → A → B → C → 0 and a left
R-module M , write down the associated long exact sequence of Tor groups;
[1pt] The sequence reads . . . → Tor2(A,M) → Tor2(B,M) → Tor2(C,M) → (B)
Tor1(A,M)→ Tor1(B,M)→ Tor1(C,M)→ A⊗R M → B ⊗R M → C ⊗R M → 0

(iii) Explain the main steps involved in defining this long exact sequence and in proving
that it is indeed exact (you may rely on the results stated in part (b.ii)).
[3pt] Given a short exact sequence 0 → A → B → C → 0, by the horseshoe (S)
lemma, one may find projective resolutions P• → A, Q• → B, R• → C which
assemble into a short exact sequence of chain complexes 0 → P• → Q• →
R• → 0, compatibly with the augmentations to A, B, C. Since each Rn is
projective, for each n, the short exact sequence 0 → Pn → Qn → Rn → 0 is
split. The sequences 0→ Pn⊗RM → Qn⊗RM → Rn⊗RM → 0 are therefore
also (split) exact. So we get a short exact sequence of chain complexes
0→ P•⊗RM → Q•⊗RM → R•⊗RM → 0. Applying homology, we get a long
exact sequence of Tor groups.

(d) [6 marks] Let k be a field, and let R := k[x]/(xn). Consider the short exact sequence of
R-modules

0→ R/(xa)→ R/(xa+b)→ R/(xb)→ 0, (?)

and let M := R/xc, where a < b < c < a + b < n/2. Then there is an associated long
exact sequence of Tor groups, obtained by applying the derived functors of M ⊗R − to
the terms in the short exact sequence (?).

Compute all the terms and all the maps in the above long exact sequence.
[6pt] We first claim that, when p, q 6 n/2, we have (N)

TorRn
(
R/xp, R/xq

)
= R/xmin(p,q)

for all n > 0. By the symmetry of Tor, it’s enough to prove the case q 6 p:

a projective resolution of R/xp is given by 0 ← R
xp

←− R
xn−p

←−−− R
xp

←− R
xn−p

←−−− . . ..

Since q 6 p and q 6 n− p, applying −⊗R R/x
q gives 0← R/xq

0←− R/xq 0←− R/xq 0←−
. . .. So all the Tor groups are R/xq.
The long exact sequence of Tor groups associated to 0→ R/(xa)→ R/(xa+b)→
R/(xb)→ 0 and R/xc therefore reads

. . .→ R/(xb)→ R/(xa)→ R/(xc)→ R/(xb)→ R/(xa)→ R/(xc)→ R/(xb)→ 0

The only possible pattern of R-module maps which makes this into a long
exact sequence can be computed inductively starting from the very right. It
is 6-periodic, and given by

· · ·R/(xc)
1
� R/(xb)

0−→ R/(xa)
xc−a

� R/(xc)
xa+b−c

−−−−→ R/(xb)
xc−b

−−−→ R/(xa)
xb

−→ R/(xc)
1
� R/(xb)→ 0
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2. Let R be a ring. Unless otherwise stated, we always work in the category of R-modules.

(a) [8 marks] (i) Define what it means for an R-module to be injective.
[2pt] A module E is injective if ∀ monomorphism i : A→ B and every map (B)
f : A→ E, one can factorise f as f = gi for some map g : B → E.

(ii) State Baer’s criterion for injectivity.
[2pt] An R-module E is injective iff ∀ ideal I ⊂ R and every R-module map (B)
f : I → E, one can factorise f as f = gi for some R-module map g : R → E.
Here, i denotes the inclusion of I into R.

(iii) Prove that Q is an injective Z-module.
[2pt] All the ideals of Z are principal. For every ideal nZ ⊂ Z and every (B)
map f : nZ→ Q, we need to extend f to a map f ′ : Z→ Q. If n = 0, we let
f ′ = 0. If n 6= 0, we let f ′(a) := 1

n · f(na).

(iv) State the classification theorem of injective Z-modules (make sure to define all the
terms that you use).
[2pt] Both of the following answers are acceptable: (S)
(a) A Z-module is injective iff it is divisible. Here, A divisible means
∀a ∈ A, ∀n ∈ N, ∃b ∈ A s.t. nb = a.
(b) A Z-module is injective iff it is a direct sum of copies of Q and Z[1

p ]/Z.

(b) [7 marks] (i) Define Ext∗(A,B) using injective resolutions.
[1pt] Let B → I• be an injective resolution. Then Extn(A,B) is the n-th (B)
cohomology group of the cochain complex Hom(A, I•).

(ii) Let R := Z/4.
Prove that Z/4 is an injective Z/4-module.
Compute Ext∗R(Z/2,Z/2) using injective resolutions.
[3pt] One first checks that Z/4 is injective using Baer’s criterion. The only (S)
non-trivial ideal is I := 2R ⊂ R; it is isomorphic to Z/2. There are exactly
two maps Z/2 → Z/4 (one zero, one non-zero), and it’s easy to see that
they both factor through the inclusion Z/2 ↪→ Z/4.
An injective resolution of Z/2 as Z/4-module is given by

Z/2
·2
� Z/4 ·2→ Z/4 ·2→ Z/4 ·2→ . . .

Applying HomR(Z/2,−) to the (truncated) resolution, we get Z/2 0→ Z/2 0→
Z/2 0→ Z/2 0→ . . . Therefore ExtnZ/4(Z/2,Z/2) = Z/2, ∀n > 0.

(iii) Explain the main steps of the proof that Ext∗(A,B) is independent of the choice of
injective resolution.
[3pt] Any two injective resolutions I•, J• of B are chain homotopy equiva- (S)
lent. Applying a linear functor, such as Hom(A,−), sends chain homotopy
equivalent complexes to chain homotopy equivalent complexes. There-
fore Hom(A, I•) and Hom(A, J•) are chain homotopy equivalent. To finish
the argument, one uses the fact that chain homotopy equivalent cochain
complexes have isomorphic cohomology groups.

(c) [5 marks] (i) Prove that the quotient of an injective Z-module is again injective.
[2pt] We prove that the quotient of a divisible group is again divisible. (S)
Let A be divisible and let q : A � B be a quotient map. Given b ∈ B and
n ∈ N, pick a preimage a ∈ A and an element a′ s.t. na′ = a. Then b′ := q(a′)
satisfies nb′ = b.

(ii) Prove that, when R is an arbitrary ring, the quotient of an injective R-module is in
general not injective. Hint: argue by contradiction.
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[3pt] If it were true that the quotient of an injective R-module is always (N)
injective, then every R-module A would admit an injective resolution of
length 1, namely A � I0 → I0/A → 0. It would follow that ExtnR(B,A) = 0
for all n > 2. Contradiction.

(d) [5 marks] (i) Let k be a field.
Let R be a commutative k-algebra, and let P be a projective R-module.
Prove that Homk(P, k) is always an injective R-module.
[3pt] An R-module map A→ Homk(P, k) is the same thing as a k-linear map (N)
A⊗RP → k. Given a monomorphism A� B, we need to show that the map
HomR(B,Homk(P, k))→ HomR(A,Homk(P, k)) is surjective. That’s equivalent
to the map Homk(B ⊗R P, k) → Homk(A ⊗R P, k) being surjective. That in
turn is equivalent to the map A⊗R P → B ⊗R P being injective (using that
k is a field). The latter holds true since P is projective, and hence flat.

(ii) Let R := k[x, y], and let M := k[[x−1, y−1]] be the ring of formal power series in
two variables, called x−1 and y−1. Explain how to equip M with the structure of a
k[x, y]-module, and prove that it is an an injective module.
[2pt] M is the k-linear dual of k[x, y] and is therefore an injective module by (N)
part (i). The R-module structure on M is given by xayb · xnym = xa+nyb+m

if both a+ n and b+m are non-positive, and xayb · xnym = 0 otherwise.
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3. (a) [6 marks] (i) Define the notion of a projective object in an abelian category.
[1pt] An object P is projective if the functor Hom(P,−) sends epimorphisms (B)
to epimorphisms. I.e. for every epimorphism f : A � B, the map f ◦ − :
Hom(P,A)→ Hom(P,B) is surjective.

(ii) Prove that free R-modules are projective in the abelian category of R-modules.
[2pt] If P is free on some set X, then Hom(P,A) = AX . If A→ B is surjective (B)
then, clearly, so is the induced map AX → BX .

(iii) Define what is meant by a projective resolution of an R-module.
[1pt] A projective resolution of M is an exact sequence . . .→ Pn → Pn−1 → (B)
. . .→ P1 → P0 →M → 0, where all the Pn are projective.

(iv) Prove that every R-module M admits a projective resolution.
[2pt] Pick a generating set {mi}i∈I0 of M , and let P0 := RI0. The map (B)
ε : P0 →M sends the ith basis element of P0 to mi.
Pick a generating set {xi,1}i∈I1 of ker(ε), and let P1 := RI1. The map d1 :
P1 → P0 sends the ith basis element to xi,1.
The construction continues by induction; the inductive step is as follows:
Pick a generating set {xi,n}i∈In of ker(dn−1), and let Pn := RIn. The map
dn : Pn → Pn−1 sends the ith basis element to xi,n.

From now on, unless otherwise stated, we always work in the category of R-modules, for
some ring R.

(b) [11 marks] (i) Define what is meant by two chain maps (between chain complexes of
R-modules) being chain homotopic.
[1pt] Two chain maps f•, g• : C• → D• are chain homotopic if there exist (B)
maps hn : Cn → Dn+1 such that dhn + hn−1d = fn − gn ∀n.

(ii) Prove that chain homotopic maps induce the same map at the level of homology.
[2pt] For x ∈ Cn representing a class [x] ∈ Hn(C•), we have dx = 0. So (S)
dhn(x) = fn(x)− gn(x). Hence [fn(x)] = [gn(x)] in Hn(D•).

(iii) Prove that if two chain complexes are chain homotopy equivalent then they have
isomorphic homology groups.
[2pt] A chain homotopy equivalence between C• and D• consists of chain (S)
maps f• : C• → D• and g• : D• → C• such that f• ◦ g• and g• ◦ f• are chain
homotopic to the identity. By part (ii), at the level of homology, the
maps Hn(f•) : Hn(C•)→ Hn(D•) and Hn(g•) : Hn(D•)→ Hn(C•) are such that
Hn(f•) ◦Hn(g•) and Hn(g•) ◦Hn(f•) are equal to the identity. Hence Hn(f•)
and Hn(g•) are isomorphisms (and each other’s inverses).

(iv) Provide an example of two chain complexes which are chain homotopy equivalent but
not isomorphic. Explain why they have the stated properties.
[3pt] The zero complex and the complex C• := (. . .→ 0→ Z→ Z→ 0→ . . . ) (S)
are chain homotopy equivalent. The relevant maps are 0 : 0 → C• and
0 : C• → 0. The only non-trivial thing to show is that the zero map
C• → C• is chain homotopic to the identity. The chain homotopy which
exhibits that fact has only one non-zero term, which is an iso Z→ Z.

(v) Provide an example of two chain complexes which have isomorphic homology groups,
but which are not chain homotopy equivalent. Explain why they have the stated
properties.

[3pt] The complex C• := (. . . → 0 → Z 2→ Z → 0 → . . . ) and the complex (S)
D• := (. . .→ 0→ 0→ Z/2→ 0→ . . . ) have isomorphic homology groups but
are not chain homotopy equivalent. Indeed, there are no non-zero maps
D• → C•.
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(c) [3 marks] Given two chain complexes P• and Q•, we let

Hom(P•, Q•) := TotΠ(Hom(P•, Q•)). (∗)

Explain how one can identify cocycles in Zn(Hom(P•, Q•)) with chain maps P• → Q• of
degree −n.
[3pt] An element (fi)i∈Z ∈

∏
i∈Z Hom(Pi+n, Qi) is a cocycle of the cochain complex (N)

(∗) iff
(−1)ifi ◦ d+ d ◦ fi+1 = 0 ∀i ∈ Z.

Let f̃i := εifi, where εi := 1 when i = 0, 3 mod(4) and εi := −1 when i = 1, 2
mod(4). Then the new maps f̃i satisfy f̃i ◦ d = d ◦ f̃i+1, ∀i ∈ Z. So, collectively,
they form a chain map f̃• : P• → Q• of degree −n.

(d) [5 marks] Recall that Ext∗(A,B) can be computed as the cohomology of the cochain
complex (∗), where P• and Q• are projective resolutions of A and B, respectively.
Recall also that two cocycles f, g ∈ Zn(Hom(P•, Q•)) represent the same element in
Hn(Hom(P•, Q•)) if and only if the corresponding chain maps are chain homotopic.

(i) Let k be a field.
Compute Ext∗k[x]/x2(k, k) according to the above recipe

(i.e. by choosing a projective resolution P• → k and computing the cohomology of
Hom(P•, P•), equivalently the set of chain homotopy classes of maps P• → P•).
[3pt] Let R := k[x]/x2. A projective resolution of k is given by R

x←− R
x←− (N)

R
x←− . . .. A general degree (−n) chain map P• → P• is of the form

0 ← R
x← . . .

x← R
x← R

x← R
x← R

x← . . .
↓ ↓

0 ← R
x← R

x← . . .

(†)

where the jth vertical map is given by 1 7→ a+ bjx for a, bj ∈ k. Such a map
is nulhomotopic iff a = 0. It follows that ExtnR(k, k) = k for every n ∈ N.

(ii) Use this to compute the ring structure on Ext∗k[x]/x2(k, k).

[2pt] The generator yn of Extn(k, k) is represented by the chain map (†), (N)
where all the vertical maps are identity maps. One easily checks that
yn ◦ ym = yn+m. It follows that Ext∗k[x]/x2(k, k) = k[y1], with yn = yn1 .
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