Final Honour School of Mathematics Part C

C2.2 Homological Algebra Dr Henriques Checked by: Prof. Nikolay Nikolov

dd/mm/yyyy

Do not turn this page until you are told that you may do so

- 1. Let \mathcal{A} be an abelian category.
 - (a) [6 marks] (i) Define the kernel of a morphism f: M → N in A.
 [2pt] A morphism ι: K → M exhibits K as the kernel of f if fι = 0 and for (B) all ι': K' → M with fι' = 0 there ∃ a unique factorisation of ι' through ι.
 I.e. ι' = ιg for some unique map g: K' → K.
 - (ii) Define the notion of a short exact sequence in an abelian category.
 [2pt] A sequence 0 → A → B → C → 0 is exact if A → B exhibits A as the (B) kernel of B → C, and B → C exhibits C as the cokernel of A → B.
 - (iii) Let R be a ring, and let us assume that A is the category of R-modules. Prove that, in that case, ker(f) = {x ∈ M | f(x) = 0}.
 [2pt] Let K := {x ∈ M | f(x) = 0}. The inclusion ι : K → M satisfies fι = 0. (S) Given ι' : K' → M with fι' = 0, then for every k' ∈ K' we have ι'(k') ∈ K. The image of ι' is therefore contained in K, and we get a factorisation ι' = ιg. The map ι is injective so if ι' = ιg and ι' = ιg' we must have g = g'. The factorisation is therefore unique.

From now on, we fix a ring R and assume that $\mathcal{A} = R$ -Mod is the category of R-modules.

- (b) [8 marks] (i) Explain what is meant by a short exact sequence of chain complexes.
 [1pt] A short exact sequence of chain complexes is a diagram of chain (B) complexes 0 → A_• → B_• → C_• → 0 such that for every n ∈ Z the sequence 0 → A_n → B_n → C_n → 0 is exact.
 - (ii) Given a short exact sequence of chain complexes $0 \to P_{\bullet} \xrightarrow{f_{\bullet}} Q_{\bullet} \xrightarrow{g_{\bullet}} R_{\bullet} \to 0$, there is an associated long exact sequence in homology; define the connecting homomorphism $\partial: H_n(R_{\bullet}) \to H_{n-1}(P_{\bullet})$ and prove that it is well defined.

[4pt] Given $x \in R_n$ representing a class $[x] \in H_n(R_{\bullet})$, pick a preimage $y \in Q_n$ (S) of x. The element $dy \in Q_{n-1}$ has the property that its image is zero in R_{n-1} ; it is therefore in the image of the map f_{n-1} . We set $\partial([x]) := [f_{n-1}^{-1}(dy)]$. We need to check that: (a) $d(f_{n-1}^{-1}(dy)) = 0$ (b) The class $[f_{n-1}^{-1}(dy)]$ is independent of the choice of preimage y of x (c) The class $[f_{n-1}^{-1}(dy)]$ is independent of the choice of representative x in its homology class.

(a) Since f_{n-2} is injective, it's enough to check that $f_{n-2}d(f_{n-1}^{-1}(dy)) = 0$. We compute: $f_{n-2}d(f_{n-1}^{-1}(dy)) = d(f_{n-1}(f_{n-1}^{-1}(dy))) = d(dy) = 0$.

(b) Two preimages $y, y' \in Q_n$ of x differ by an element $f_n(z)$ for some $z \in P_n$. Replacing y by y' has the effect of adding $[f_{n-1}^{-1}(d(f_n(z)))]$ to $[f_{n-1}^{-1}(dy)]$. But $[f_{n-1}^{-1}(d(f_n(z)))] = [f_{n-1}^{-1}(f_{n-1}(d(z)))] = [dz] = 0$.

(c) It's enough to show that when $x = d\hat{x}$ for some $\hat{x} \in R_{n+1}$, the recipe for ∂ yields zero in $H_{n-1}(P_{\bullet})$. Pick a preimage $\hat{y} \in Q_{n+1}$ of \hat{x} , and set $y := d\hat{y}$ (this is allowed by part (b)). Then $\partial([d\hat{x}]) = [f_{n-1}^{-1}(dd\hat{y})] = 0$.

(iii) Prove that

$$\ker(\partial: H_n(R_{\bullet}) \to H_{n-1}(P_{\bullet})) = \operatorname{im}(H_n(Q_{\bullet}) \to H_n(R_{\bullet})).$$

[3pt] (im \subset ker): If $[x] \in H_n(R_{\bullet})$ is the image of $[y] \in H_n(Q_{\bullet})$, then $\partial([x]) = (S)$ $[f_{n-1}^{-1}(dy)] = 0$ because dy = 0.

(ker \subset im): If $\partial([x]) = [f_{n-1}^{-1}(dy)] = 0$, then $f_{n-1}^{-1}(dy) = dz$ for some $z \in P_n$. The element $y' := y - f_n(z) \in Q_n$ is also a preimage of x, and satisfies dy' = 0. It therefore represents an element in $H_n(Q_{\bullet})$. By construction, $[y'] \mapsto [x]$.

(c) [5 marks] (i) Define the Tor groups $Tor_*(-,-)$.

[1pt] Given a projective resolution $P_{\bullet} \to A$, the Tor groups $\operatorname{Tor}_{*}^{R}(A, B)$ are (B) the homology groups of the complex $P_{\bullet} \otimes_{R} B$.

- (ii) Given a short exact sequence of right *R*-modules $0 \to A \to B \to C \to 0$ and a left *R*-module *M*, write down the associated long exact sequence of Tor groups; [1pt] The sequence reads ... $\to \text{Tor}_2(A, M) \to \text{Tor}_2(B, M) \to \text{Tor}_2(C, M) \to (\mathbf{B})$ $\text{Tor}_1(A, M) \to \text{Tor}_1(B, M) \to \text{Tor}_1(C, M) \to A \otimes_R M \to B \otimes_R M \to C \otimes_R M \to 0$
- (iii) Explain the main steps involved in defining this long exact sequence and in proving that it is indeed exact (you may rely on the results stated in part (b.ii)).
 [3pt] Given a short exact sequence 0 → A → B → C → 0, by the horseshoe (S) lemma, one may find projective resolutions P_• → A, Q_• → B, R_• → C which assemble into a short exact sequence of chain complexes 0 → P_• → Q_• → R_• → 0, compatibly with the augmentations to A, B, C. Since each R_n is projective, for each n, the short exact sequence 0 → P_n → Q_n → R_n → 0 is split. The sequences 0 → P_n ⊗_R M → Q_n ⊗_R M → R_n ⊗_R M → 0 are therefore also (split) exact. So we get a short exact sequence of chain complexes 0 → P_• ⊗_R M → Q_• ⊗_R M → R_• ⊗_R M → 0. Applying homology, we get a long exact sequence of Tor groups.
- (d) [6 marks] Let k be a field, and let $R := k[x]/(x^n)$. Consider the short exact sequence of R-modules

$$0 \to R/(x^a) \to R/(x^{a+b}) \to R/(x^b) \to 0, \tag{(\star)}$$

and let $M := R/x^c$, where a < b < c < a + b < n/2. Then there is an associated long exact sequence of Tor groups, obtained by applying the derived functors of $M \otimes_R -$ to the terms in the short exact sequence (*).

Compute all the terms and all the maps in the above long exact sequence. [6pt] We first claim that, when $p, q \leq n/2$, we have

$$\operatorname{Tor}_{n}^{R}(R/x^{p}, R/x^{q}) = R/x^{\min(p,q)}$$

for all $n \ge 0$. By the symmetry of Tor, it's enough to prove the case $q \le p$: a projective resolution of R/x^p is given by $0 \leftarrow R \xleftarrow{x^p} R \xleftarrow{x^{n-p}} R \xleftarrow{x^p} R \xleftarrow{x^{n-p}} \dots$ Since $q \le p$ and $q \le n-p$, applying $- \bigotimes_R R/x^q$ gives $0 \leftarrow R/x^q \xleftarrow{0} R/x^q \xleftarrow{0}$

The long exact sequence of Tor groups associated to $0 \to R/(x^a) \to R/(x^{a+b}) \to R/(x^b) \to 0$ and R/x^c therefore reads

$$\ldots \to R/(x^b) \to R/(x^a) \to R/(x^c) \to R/(x^b) \to R/(x^a) \to R/(x^c) \to R/(x^b) \to 0$$

The only possible pattern of R-module maps which makes this into a long exact sequence can be computed inductively starting from the very right. It is 6-periodic, and given by

$$\cdots R/(x^c) \xrightarrow{1} R/(x^b) \xrightarrow{0} R/(x^a) \xrightarrow{x^{c-a}} R/(x^c) \xrightarrow{x^{a+b-c}} R/(x^b) \xrightarrow{x^{c-b}} R/(x^a) \xrightarrow{x^b} R/(x^c) \xrightarrow{1} R/(x^b) \to 0$$

(N)

- 2. Let R be a ring. Unless otherwise stated, we always work in the category of R-modules.
 - (a) [8 marks] (i) Define what it means for an *R*-module to be *injective*.
 [2pt] A module *E* is injective if ∀ monomorphism *i* : *A* → *B* and every map (B) *f* : *A* → *E*, one can factorise *f* as *f* = *gi* for some map *g* : *B* → *E*.
 - (ii) State Baer's criterion for injectivity.
 [2pt] An *R*-module *E* is injective iff ∀ ideal *I* ⊂ *R* and every *R*-module map (B) *f* : *I* → *E*, one can factorise *f* as *f* = *gi* for some *R*-module map *g* : *R* → *E*. Here, *i* denotes the inclusion of *I* into *R*.
 - (iii) Prove that Q is an injective Z-module.
 [2pt] All the ideals of Z are principal. For every ideal nZ ⊂ Z and every (B) map f : nZ → Q, we need to extend f to a map f' : Z → Q. If n = 0, we let f' = 0. If n ≠ 0, we let f'(a) := 1/n ⋅ f(na).
 - (iv) State the classification theorem of injective \mathbb{Z} -modules (make sure to define all the terms that you use).

[2pt] Both of the following answers are acceptable:

(S)

(a) A Z-module is injective iff it is divisible. Here, A divisible means $\forall a \in A, \forall n \in \mathbb{N}, \exists b \in A \text{ s.t. } nb = a.$

(b) A \mathbb{Z} -module is injective iff it is a direct sum of copies of \mathbb{Q} and $\mathbb{Z}[\frac{1}{n}]/\mathbb{Z}$.

- (b) [7 marks] (i) Define Ext*(A, B) using injective resolutions.
 [1pt] Let B → I[•] be an injective resolution. Then Extⁿ(A, B) is the n-th (B) cohomology group of the cochain complex Hom(A, I[•]).
 - (ii) Let $R := \mathbb{Z}/4$.

Prove that $\mathbb{Z}/4$ is an injective $\mathbb{Z}/4$ -module.

Compute $\operatorname{Ext}_{R}^{*}(\mathbb{Z}/2,\mathbb{Z}/2)$ using injective resolutions.

[3pt] One first checks that $\mathbb{Z}/4$ is injective using Baer's criterion. The only (S) non-trivial ideal is $I := 2R \subset R$; it is isomorphic to $\mathbb{Z}/2$. There are exactly two maps $\mathbb{Z}/2 \to \mathbb{Z}/4$ (one zero, one non-zero), and it's easy to see that they both factor through the inclusion $\mathbb{Z}/2 \hookrightarrow \mathbb{Z}/4$.

An injective resolution of $\mathbb{Z}/2$ as $\mathbb{Z}/4$ -module is given by

$$\mathbb{Z}/2 \xrightarrow{\cdot^2} \mathbb{Z}/4 \xrightarrow{\cdot^2} \mathbb{Z}/4 \xrightarrow{\cdot^2} \mathbb{Z}/4 \xrightarrow{\cdot^2} \dots$$

Applying $\operatorname{Hom}_{R}(\mathbb{Z}/2, -)$ to the (truncated) resolution, we get $\mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \mathbb{Z}/2 \xrightarrow{0} \dots$ Therefore $\operatorname{Ext}_{\mathbb{Z}/4}^{n}(\mathbb{Z}/2, \mathbb{Z}/2) = \mathbb{Z}/2, \forall n \ge 0.$

(iii) Explain the main steps of the proof that Ext*(A, B) is independent of the choice of injective resolution.
[3pt] Any two injective resolutions I[•], J[•] of B are chain homotopy equiva- (S)

[spt] Any two injective resolutions I, J of B are chain homotopy equiva-(S) lent. Applying a linear functor, such as Hom(A, -), sends chain homotopy equivalent complexes to chain homotopy equivalent complexes. Therefore $\text{Hom}(A, I^{\bullet})$ and $\text{Hom}(A, J^{\bullet})$ are chain homotopy equivalent. To finish the argument, one uses the fact that chain homotopy equivalent cochain complexes have isomorphic cohomology groups.

- (c) [5 marks] (i) Prove that the quotient of an injective Z-module is again injective.
 [2pt] We prove that the quotient of a divisible group is again divisible. (S) Let A be divisible and let q : A → B be a quotient map. Given b ∈ B and n ∈ N, pick a preimage a ∈ A and an element a' s.t. na' = a. Then b' := q(a') satisfies nb' = b.
 - (ii) Prove that, when R is an arbitrary ring, the quotient of an injective R-module is in general not injective. *Hint:* argue by contradiction.

[3pt] If it were true that the quotient of an injective *R*-module is always (N) injective, then every *R*-module *A* would admit an injective resolution of length 1, namely $A \rightarrow I_0 \rightarrow I_0/A \rightarrow 0$. It would follow that $\operatorname{Ext}_R^n(B, A) = 0$ for all $n \ge 2$. Contradiction.

(d) [5 marks] (i) Let k be a field.

Let R be a commutative k-algebra, and let P be a projective R-module. Prove that $\operatorname{Hom}_k(P, k)$ is always an injective R-module. [**3pt**] An R-module map $A \to \operatorname{Hom}_k(P, k)$ is the same thing as a k-linear map (N) $A \otimes_R P \to k$. Given a monomorphism $A \to B$, we need to show that the map $\operatorname{Hom}_R(B, \operatorname{Hom}_k(P, k)) \to \operatorname{Hom}_R(A, \operatorname{Hom}_k(P, k))$ is surjective. That's equivalent to the map $\operatorname{Hom}_k(B \otimes_R P, k) \to \operatorname{Hom}_k(A \otimes_R P, k)$ being surjective. That in turn is equivalent to the map $A \otimes_R P \to B \otimes_R P$ being injective (using that k is a field). The latter holds true since P is projective, and hence flat.

(ii) Let R := k[x, y], and let M := k[[x⁻¹, y⁻¹]] be the ring of formal power series in two variables, called x⁻¹ and y⁻¹. Explain how to equip M with the structure of a k[x, y]-module, and prove that it is an an injective module.
[2pt] M is the k-linear dual of k[x, y] and is therefore an injective module by (N)

[2pt] *M* is the *k*-linear dual of k[x, y] and is therefore an injective module by (IN) part (i). The *R*-module structure on *M* is given by $x^a y^b \cdot x^n y^m = x^{a+n} y^{b+m}$ if both a + n and b + m are non-positive, and $x^a y^b \cdot x^n y^m = 0$ otherwise.

- 3. (a) [6 marks] (i) Define the notion of a projective object in an abelian category.
 [1pt] An object P is projective if the functor Hom(P, -) sends epimorphisms (B) to epimorphisms. I.e. for every epimorphism f : A → B, the map f ∘ : Hom(P, A) → Hom(P, B) is surjective.
 - (ii) Prove that free *R*-modules are projective in the abelian category of *R*-modules. [2pt] If *P* is free on some set *X*, then $\operatorname{Hom}(P, A) = A^X$. If $A \to B$ is surjective (B) then, clearly, so is the induced map $A^X \to B^X$.
 - (iii) Define what is meant by a *projective resolution* of an *R*-module. [1pt] A projective resolution of *M* is an exact sequence $\ldots \rightarrow P_n \rightarrow P_{n-1} \rightarrow$ (B) $\ldots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$, where all the P_n are projective.
 - (iv) Prove that every R-module M admits a projective resolution. [2pt] Pick a generating set $\{m_i\}_{i\in I_0}$ of M, and let $P_0 := R^{I_0}$. The map (B) $\epsilon: P_0 \to M$ sends the *i*th basis element of P_0 to m_i . Pick a generating set $\{x_{i,1}\}_{i\in I_1}$ of ker (ϵ) , and let $P_1 := R^{I_1}$. The map $d_1 : P_1 \to P_0$ sends the *i*th basis element to $x_{i,1}$. The construction continues by induction; the inductive step is as follows: Pick a generating set $\{x_{i,n}\}_{i\in I_n}$ of ker (d_{n-1}) , and let $P_n := R^{I_n}$. The map $d_n: P_n \to P_{n-1}$ sends the *i*th basis element to $x_{i,n}$.

From now on, unless otherwise stated, we always work in the category of R-modules, for some ring R.

(b) [11 marks] (i) Define what is meant by two chain maps (between chain complexes of *R*-modules) being *chain homotopic*.

[1pt] Two chain maps $f_{\bullet}, g_{\bullet} : C_{\bullet} \to D_{\bullet}$ are chain homotopic if there exist (B) maps $h_n : C_n \to D_{n+1}$ such that $dh_n + h_{n-1}d = f_n - g_n \ \forall n$.

- (ii) Prove that chain homotopic maps induce the same map at the level of homology. [2pt] For $x \in C_n$ representing a class $[x] \in H_n(C_{\bullet})$, we have dx = 0. So (S) $dh_n(x) = f_n(x) - g_n(x)$. Hence $[f_n(x)] = [g_n(x)]$ in $H_n(D_{\bullet})$.
- (iii) Prove that if two chain complexes are chain homotopy equivalent then they have isomorphic homology groups.
 [2pt] A shain homotopy equivalence between C and D consists of shain (

[2pt] A chain homotopy equivalence between C_{\bullet} and D_{\bullet} consists of chain (S) maps $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ and $g_{\bullet}: D_{\bullet} \to C_{\bullet}$ such that $f_{\bullet} \circ g_{\bullet}$ and $g_{\bullet} \circ f_{\bullet}$ are chain homotopic to the identity. By part (ii), at the level of homology, the maps $H_n(f_{\bullet}): H_n(C_{\bullet}) \to H_n(D_{\bullet})$ and $H_n(g_{\bullet}): H_n(D_{\bullet}) \to H_n(C_{\bullet})$ are such that $H_n(f_{\bullet}) \circ H_n(g_{\bullet})$ and $H_n(g_{\bullet}) \circ H_n(f_{\bullet})$ are equal to the identity. Hence $H_n(f_{\bullet})$ and $H_n(g_{\bullet})$ are isomorphisms (and each other's inverses).

- (iv) Provide an example of two chain complexes which are chain homotopy equivalent but not isomorphic. Explain why they have the stated properties. [3pt] The zero complex and the complex $C_{\bullet} := (\ldots \to 0 \to \mathbb{Z} \to \mathbb{Z} \to 0 \to \ldots)$ (S) are chain homotopy equivalent. The relevant maps are $0 : 0 \to C_{\bullet}$ and $0 : C_{\bullet} \to 0$. The only non-trivial thing to show is that the zero map $C_{\bullet} \to C_{\bullet}$ is chain homotopic to the identity. The chain homotopy which exhibits that fact has only one non-zero term, which is an iso $\mathbb{Z} \to \mathbb{Z}$.
- (v) Provide an example of two chain complexes which have isomorphic homology groups, but which are not chain homotopy equivalent. Explain why they have the stated properties.

[3pt] The complex $C_{\bullet} := (\ldots \to 0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to 0 \to \ldots)$ and the complex (S) $D_{\bullet} := (\ldots \to 0 \to 0 \to \mathbb{Z}/2 \to 0 \to \ldots)$ have isomorphic homology groups but are not chain homotopy equivalent. Indeed, there are no non-zero maps $D_{\bullet} \to C_{\bullet}$.

(c) [3 marks] Given two chain complexes P_{\bullet} and Q_{\bullet} , we let

$$\underline{\operatorname{Hom}}(P_{\bullet}, Q_{\bullet}) := \operatorname{Tot}^{\Pi}(\operatorname{Hom}(P_{\bullet}, Q_{\bullet})).$$
(*)

Explain how one can identify cocycles in $Z^n(\underline{\operatorname{Hom}}(P_{\bullet}, Q_{\bullet}))$ with chain maps $P_{\bullet} \to Q_{\bullet}$ of degree -n.

[3pt] An element $(f_i)_{i \in \mathbb{Z}} \in \prod_{i \in \mathbb{Z}} \operatorname{Hom}(P_{i+n}, Q_i)$ is a cocycle of the cochain complex (N) (*) iff

$$(-1)^i f_i \circ d + d \circ f_{i+1} = 0 \qquad \forall i \in \mathbb{Z}.$$

Let $\tilde{f}_i := \varepsilon_i f_i$, where $\varepsilon_i := 1$ when $i = 0, 3 \mod(4)$ and $\varepsilon_i := -1$ when $i = 1, 2 \mod(4)$. Then the new maps \tilde{f}_i satisfy $\tilde{f}_i \circ d = d \circ \tilde{f}_{i+1}$, $\forall i \in \mathbb{Z}$. So, collectively, they form a chain map $\tilde{f}_{\bullet} : P_{\bullet} \to Q_{\bullet}$ of degree -n.

- (d) [5 marks] Recall that $\operatorname{Ext}^*(A, B)$ can be computed as the cohomology of the cochain complex (*), where P_{\bullet} and Q_{\bullet} are projective resolutions of A and B, respectively. Recall also that two cocycles $f, g \in Z^n(\operatorname{Hom}(P_{\bullet}, Q_{\bullet}))$ represent the same element in $H^n(\operatorname{Hom}(P_{\bullet}, Q_{\bullet}))$ if and only if the corresponding chain maps are chain homotopic.
 - (i) Let k be a field.

Compute $\operatorname{Ext}_{k[x]/x^2}^*(k,k)$ according to the above recipe (i.e. by choosing a projective resolution $P_{\bullet} \to k$ and computing the cohomology of $\operatorname{Hom}(P_{\bullet}, P_{\bullet})$, equivalently the set of chain homotopy classes of maps $P_{\bullet} \to P_{\bullet})$. [**3pt**] Let $R := k[x]/x^2$. A projective resolution of k is given by $R \xleftarrow{x} R \xleftarrow{x} (\mathbf{N})$ $R \xleftarrow{x} \dots$ A general degree (-n) chain map $P_{\bullet} \to P_{\bullet}$ is of the form

where the *j*th vertical map is given by $1 \mapsto a + b_j x$ for $a, b_j \in k$. Such a map is nulhomotopic iff a = 0. It follows that $\operatorname{Ext}^n_R(k, k) = k$ for every $n \in \mathbb{N}$.

(ii) Use this to compute the ring structure on Ext^{*}_{k[x]/x²}(k, k).
[2pt] The generator y_n of Extⁿ(k, k) is represented by the chain map (†), (N) where all the vertical maps are identity maps. One easily checks that y_n ∘ y_m = y_{n+m}. It follows that Ext^{*}_{k[x]/x²}(k, k) = k[y₁], with y_n = yⁿ₁.