Homological algebra

André Henriques

Sheet 2

Exercise 1. Let k be a field, and let C be the abelian category of k-vector spaces. Let D be an arbitrary abelian category. Prove that every additive functor $C \to D$ is exact.

Exercise 2. Let R and S be rings, let C := R-Mod and D := S-Mod be the associated abelian categories of modules, and let $F : C \to D$ be an additive functor.

Assume that F sends short exact sequences to short exact sequences. Prove that it sends exact sequences (or any length) to exact sequences.

Exercise 3. Let R be a ring. Prove that an R-module P is projective iff every surjective map $A \to P$ admits a section.

Exercise 4. Let $R := \mathbb{Z}[\sqrt{-5}]$. Prove that the ideal generated by 2 and $1 + \sqrt{-5}$ is a projective *R*-module which is not free. *Hint:* show that the map $\binom{2}{1+\sqrt{-5}} \stackrel{1-\sqrt{-5}}{2} : R^{\oplus 2} \to M^{\oplus 2}$ is an isomorphism.

Exercise 5. Let R be a ring. Prove that for every sequence of R-modules $(M_i)_{n \in \mathbb{Z}}$, there exists a chain complex of free modules C_{\bullet} such that $H_i(C_{\bullet}) \cong M_i$ for all $i \in \mathbb{Z}$.

Exercise 6. Let \mathcal{A} be an arbitrary abelian category, and let $Ch(\mathcal{A})$ be the category of chain complexes of objects of \mathcal{A} . Given a morphism $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ in $Ch(\mathcal{A})$, prove that the kernel of f_{\bullet} is the chain complex $(\ldots \to \ker(f_n) \to \ker(f_{n-1}) \to \ldots)$.

The next exercise is a long and painful one which I don't expect you (or want you) to finish. But I do want you to start it. Write down what you think is approximately 50% of the proof, and then write "I give up" (or, if you don't want to give up, you may hand in a complete answer):

Exercise 7. Prove that a short exact sequence of chain complexes (of *R*-modules)

induces a long exact sequence in homology

$$\dots \to H_{n+1}(C_{\bullet}) \to H_n(A_{\bullet}) \to H_n(B_{\bullet}) \to H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet}) \to \dots$$

[For the definition of the so-called 'connecting homomorphism' $H_{n+1}(C_{\bullet}) \to H_n(A_{\bullet})$, you may have a look at e.g. https://ncatlab.org/nlab/show/connecting+homomorphism]

(Hand in the Monday before the class, at 5pm)