Homological algebra

André Henriques

Sheet 4

Exercise 1. Consider the abelian category whose objects are diagrams $(M_1 \xleftarrow{f_1} M_2 \xleftarrow{f_2} M_3 \xleftarrow{f_3} \dots)$ of abelian groups indexed by \mathbb{N} , and whose morphisms are natural transformations between such diagrams. Show, that the functor which sends an object $(M_1 \xleftarrow{f_1} M_2 \xleftarrow{f_2} M_3 \xleftarrow{f_3} \dots)$ to its inverse limit $\underline{\lim} M_i$ is not right exact.

Hint: Construct a suitable morphism between the object $(\mathbb{Z} \stackrel{id}{\leftarrow} \mathbb{Z} \stackrel{id}{\leftarrow} \mathbb{Z}...)$ and the object $(\mathbb{Z}/2\mathbb{Z} \twoheadleftarrow \mathbb{Z}/4\mathbb{Z} \twoheadleftarrow \mathbb{Z}/8\mathbb{Z}...)$, and analyse its properties.

In order to show that a functor F is not right exact, it suffices to exhibit an epimorphism f such that F(f) is not an epimorphism. We consider the morphism

$$\mathbb{Z} \quad \stackrel{id}{\longleftarrow} \quad \mathbb{Z} \quad \stackrel{id}{\longleftarrow} \quad \mathbb{Z} \quad \stackrel{id}{\longleftarrow} \quad \mathbb{Z} \quad \stackrel{id}{\longleftarrow} \quad \dots$$
$$\stackrel{\downarrow}{\mathbb{Z}/2\mathbb{Z}} \quad \stackrel{\downarrow}{\longleftarrow} \quad \stackrel{\downarrow}{\mathbb{Z}/4\mathbb{Z}} \quad \stackrel{\downarrow}{\longleftarrow} \quad \mathbb{Z}/8\mathbb{Z} \quad \stackrel{\leftarrow}{\longleftarrow} \quad \mathbb{Z}/16\mathbb{Z} \quad \stackrel{\leftarrow}{\longleftarrow} \quad \dots$$

Its image under the functor \varprojlim is the morphism of abelian groups $\mathbb{Z} \to \mathbb{Z}_2$ (the inclusion of the integers into the 2-adic integers). The latter is not be an epimorphism.

Consider the derived functors $\lim^{i} := R^{i}(\underline{\lim})$ of the inverse limit functor

$$\underbrace{\lim} : (M_1 \xleftarrow{f_1} M_2 \xleftarrow{f_2} M_3 \xleftarrow{f_3} \ldots) \mapsto (\underbrace{\lim} M_i).$$

[You may assume the knowledge that the inverse limit functor is left exact] Assuming the knowledge that the functors \lim^i for $i \ge 1$ yield zero when evaluated on the object $(\mathbb{Z} \stackrel{id}{\leftarrow} \mathbb{Z} \stackrel{id}{\leftarrow} \mathbb{Z} \dots)$, compute the value of

$$\lim^{1} (\mathbb{Z} \stackrel{\cdot^{2}}{\longleftarrow} \mathbb{Z} \stackrel{\cdot^{2}}{\longleftarrow} \mathbb{Z} \stackrel{\cdot^{2}}{\longleftarrow} \dots).$$

The short exact sequence

$$0 \to (\mathbb{Z} \stackrel{i^2}{\leftarrow} \mathbb{Z} \stackrel{i^2}{\leftarrow} \dots) \to (\mathbb{Z} \stackrel{i^d}{\leftarrow} \mathbb{Z} \stackrel{i^d}{\leftarrow} \mathbb{Z} \dots) \to (\mathbb{Z}/2\mathbb{Z} \twoheadleftarrow \mathbb{Z}/4\mathbb{Z} \twoheadleftarrow \mathbb{Z}/8\mathbb{Z} \twoheadleftarrow \dots) \to 0$$

yields a long exact sequence of derived functors

$$0 \to \varprojlim (\mathbb{Z} \stackrel{?}{\leftarrow} \mathbb{Z} \stackrel{?}{\leftarrow} \mathbb{Z} \stackrel{?}{\leftarrow} \dots) \to \varprojlim (\mathbb{Z} \stackrel{id}{\leftarrow} \mathbb{Z} \stackrel{id}{\leftarrow} \mathbb{Z} \dots) \to \varprojlim (\mathbb{Z}/2\mathbb{Z} \twoheadleftarrow \mathbb{Z}/4\mathbb{Z} \twoheadleftarrow \mathbb{Z}/8\mathbb{Z} \twoheadleftarrow \dots) \to \lim^1 (\mathbb{Z} \stackrel{?}{\leftarrow} \mathbb{Z} \stackrel{?}{\leftarrow} \mathbb{Z} \stackrel{?}{\leftarrow} \dots) \to 0$$

which reads

$$0 \to 0 \to \mathbb{Z} \to \mathbb{Z}_2 \to ? \to 0$$

It follows that $\lim^1(\mathbb{Z} \stackrel{:2}{\leftarrow} \mathbb{Z} \stackrel{:2}{\leftarrow} \mathbb{Z} \stackrel{:2}{\leftarrow} \dots) = \mathbb{Z}_2/\mathbb{Z}.$

Exercise 2. Given a possibly non-abelian group G, the nth homology group of G with coefficients in an abelian group A is defined to be the nth Tor-group $\operatorname{Tor}_{n}^{\mathbb{Z}[G]}(\mathbb{Z}, A)$. (Here, $\mathbb{Z}[G]$ denotes the group algebra of G i.e., the free abelian group on the elements of G, equipped with the ring structure inherited from the multiplication in G).

Here, both \mathbb{Z} and A are equipped with the action of $\mathbb{Z}[G]$ in which all the generators of G act trivially.

Let G be the cyclic group of order four, so that $\mathbb{Z}[G] = \mathbb{Z}[x]/(x^4 - 1)$. Compute the group homology $H_i(G,\mathbb{Z})$ for all i.

The group algebra $\mathbb{Z}[G]$ is the same as the ring $\mathbb{Z}[x]/(x^4-1)$. So, by definition, $H_i(G,\mathbb{Z}) = \operatorname{Tor}_i^R(\mathbb{Z},\mathbb{Z})$.

A free resolution of \mathbb{Z} is given by

 $\dots R \xrightarrow{1 \mapsto 1 + x + x^2 + x^3} R \xrightarrow{1 \mapsto 1 - x} R \xrightarrow{1 \mapsto 1 + x + x^2 + x^3} R \xrightarrow{1 \mapsto 1 - x} R \to \mathbb{Z}$

Removing the last term and tensoring by \mathbb{Z} , we get

 $\dots \mathbb{Z} \xrightarrow{1+x+x^2+x^3} \mathbb{Z} \xrightarrow{1-x} \mathbb{Z} \xrightarrow{1+x+x^2+x^3} \mathbb{Z} \xrightarrow{1-x} \mathbb{Z} \to 0$

which is

 $\dots \mathbb{Z} \xrightarrow{4} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{4} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0$

So the homology is \mathbb{Z} in degree zero, $\mathbb{Z}/4$ is odd degrees, and zero otherwise.

Exercise 3. Compute the structure of the graded ring $\operatorname{Ext}_{\mathbb{Z}}^*(\mathbb{Z}/2, \mathbb{Z}/2)$. Compute the structure of the graded ring $\operatorname{Ext}_{\mathbb{Z}/8}^*(\mathbb{Z}/4, \mathbb{Z}/4)$.

 $\operatorname{Ext}_{\mathbb{Z}}^{*}(\mathbb{Z}/2,\mathbb{Z}/2)$ is $\mathbb{Z}/2$ in degree 0, $\mathbb{Z}/2$ in degree 1 and zero in all other degrees. There's only one ring with that structure, namely $(\mathbb{Z}/2)[x]/(x^2)$.

Let $R := \mathbb{Z}/8$ and let $P_{\bullet} := \left(R \stackrel{4}{\leftarrow} R \stackrel{2}{\leftarrow} R \stackrel{4}{\leftarrow} R \dots \right)$ be a resolution of $\mathbb{Z}/4$. Then the generator y of $\operatorname{Ext}^1(\mathbb{Z}/4, \mathbb{Z}/4) = \mathbb{Z}/2$ is given by

$$y := \begin{array}{c} 0 \longleftarrow R \xleftarrow{4} R \xleftarrow{2} R \xleftarrow{4} R \xleftarrow{2} R \xleftarrow{4} R \xleftarrow{2} R \xleftarrow{4} R \cdots \\ 2 \bigvee 1 \bigvee 2 \bigvee 1 \bigvee 2 \bigvee 1 \bigvee 2 \bigvee \\ 0 \xleftarrow{R} \xleftarrow{4} R \xleftarrow{2} R \xleftarrow{4} R \xleftarrow{2} R \cdots \end{array}$$

and the generator z of $\operatorname{Ext}^2(\mathbb{Z}/4, \mathbb{Z}/4) = \mathbb{Z}/2$ is given by

$$z := \begin{array}{c} 0 \longleftarrow R \xleftarrow{4} R \xleftarrow{2} R \xleftarrow{4} R \xleftarrow{2} R \xleftarrow{4} R \xleftarrow{2} R \xleftarrow{4} R \cdots \\ 1 & 1 & 1 & 1 \\ 0 \xleftarrow{R} \xleftarrow{4} R \xleftarrow{2} R \xleftarrow{4} R \cdots \end{array}$$

To check that $y^2 = 0$ in the ring $\text{Ext}^*(\mathbb{Z}/4, \mathbb{Z}/4)$, one composes the chain maps as follows:

This gives $2 \cdot z$, which is zero. So $\text{Ext}^*(\mathbb{Z}/4, \mathbb{Z}/4) = (\mathbb{Z}/4)[y, z]/(2y, y^2, 2z)$, where y is in degree 1, and z is in degree 2.