Homological algebra

André Henriques

Sheet 4

Exercise 1. Consider the abelian category whose objects are diagrams ($M_{1} \stackrel{f_{1}}{\leftarrow} M_{2} \stackrel{f_{2}}{\leftarrow} M_{3} \stackrel{f_{3}}{\rightleftarrows} \ldots$) of abelian groups indexed by \mathbb{N}, and whose morphisms are natural transformations between such diagrams. Show, that the functor which sends an object ($M_{1} \stackrel{f_{1}}{\leftarrow} M_{2} \stackrel{f_{2}}{\leftarrow} M_{3} \stackrel{f_{3}}{\leftarrow} \ldots$) to its inverse limit $\varliminf \gg M_{i}$ is not right exact.

Hint: Construct a suitable morphism between the object $(\mathbb{Z} \stackrel{i d}{\leftarrow} \mathbb{Z} \stackrel{i d}{\leftarrow} \mathbb{Z} \ldots)$ and the object $(\mathbb{Z} / 2 \mathbb{Z} \longleftarrow \mathbb{Z} / 4 \mathbb{Z} \longleftarrow \mathbb{Z} / 8 \mathbb{Z} \ldots)$, and analyse its properties.

In order to show that a functor F is not right exact, it suffices to exhibit an epimorphism f such that $F(f)$ is not an epimorphism.
We consider the morphism

$$
\begin{array}{ccccccccc}
\mathbb{Z} & \longleftarrow & \mathbb{Z} & \leftarrow & \stackrel{i d}{ } & \mathbb{Z} & \leftarrow & \mathbb{Z d} & \mathbb{Z} \\
\ddagger & & \vdots & & \stackrel{i d}{ } & \ldots \\
\mathbb{Z} / 2 \mathbb{Z} & \leftarrow & \mathbb{Z} / 4 \mathbb{Z} & \leftarrow & \mathbb{Z} / 8 \mathbb{Z} & \leftarrow & \mathbb{Z} / 16 \mathbb{Z} & \leftarrow & \ldots
\end{array}
$$

Its image under the functor \varliminf lim is the morphism of abelian groups $\mathbb{Z} \rightarrow \mathbb{Z}_{2}$ (the inclusion of the integers into the 2-adic integers). The latter is not be an epimorphism.

Consider the derived functors $\lim ^{i}:=R^{i}(\underset{\mathrm{lim}}{\mathrm{L}})$ of the inverse limit functor

$$
\underset{\rightleftarrows}{\lim }:\left(M_{1} \stackrel{f_{1}}{\leftarrow} M_{2} \stackrel{f_{2}}{\leftarrow} M_{3} \stackrel{f_{3}}{\leftarrow} \ldots\right) \mapsto\left(\lim _{\leftarrow} M_{i}\right) .
$$

[You may assume the knowledge that the inverse limit functor is left exact]
Assuming the knowledge that the functors $\lim ^{i}$ for $i \geq 1$ yield zero when evaluated on the object $(\mathbb{Z} \stackrel{i d}{\leftarrow} \mathbb{Z} \stackrel{i d}{\leftarrow} \mathbb{Z} \ldots)$, compute the value of

The short exact sequence

$$
0 \rightarrow\left(\mathbb{Z} \dot{\leftarrow}^{2} \mathbb{Z} \dot{\leftarrow}^{2} \mathbb{Z} \dot{\leftarrow}^{2} \ldots\right) \rightarrow(\mathbb{Z} \stackrel{i d}{\leftarrow} \mathbb{Z} \stackrel{i d}{\leftarrow} \mathbb{Z} \ldots) \rightarrow(\mathbb{Z} / 2 \mathbb{Z} \longleftarrow \mathbb{Z} / 4 \mathbb{Z} \longleftarrow \mathbb{Z} / 8 \mathbb{Z} \leftrightarrow \ldots) \rightarrow 0
$$

yields a long exact sequence of derived functors

$$
\begin{aligned}
& 0 \rightarrow \underset{\leftarrow}{\lim }\left(\mathbb{Z} \dot{\leftarrow}^{2} \mathbb{Z} \dot{\leftarrow}^{2} \mathbb{Z} \dot{\leftarrow}^{2} \ldots\right) \rightarrow \underset{\leftarrow}{\lim }(\mathbb{Z} \stackrel{i d}{\leftarrow} \mathbb{Z} \stackrel{i d}{\leftarrow} \mathbb{Z} \ldots) \\
& \rightarrow \underset{\leftrightarrows}{\lim }(\mathbb{Z} / 2 \mathbb{Z} \leftrightarrows \mathbb{Z} / 4 \mathbb{Z} \leftrightarrow \mathbb{Z} / 8 \mathbb{Z} \leftrightarrows \ldots) \\
& \rightarrow \lim ^{1}\left(\mathbb{Z} \dot{\leftarrow}^{2} \mathbb{Z} \dot{\leftarrow}^{2} \mathbb{Z} \dot{\leftarrow}^{2} \ldots\right) \rightarrow 0
\end{aligned}
$$

which reads

$$
0 \rightarrow 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{2} \rightarrow ? \rightarrow 0
$$

It follows that $\lim ^{1}\left(\mathbb{Z} \dot{2}_{\leftarrow}^{\leftarrow} \mathbb{Z} \dot{\leftarrow}_{\leftarrow}^{2} \mathbb{Z} \dot{¿}_{\leftarrow}^{\leftarrow} \ldots\right)=\mathbb{Z}_{2} / \mathbb{Z}$.

Exercise 2. Given a possibly non-abelian group G, the nth homology group of G with coefficients in an abelian group A is defined to be the nth Tor-group $\operatorname{Tor}_{n}^{\mathbb{Z}[G]}(\mathbb{Z}, A)$. (Here, $\mathbb{Z}[G]$ denotes the group algebra of G i.e., the free abelian group on the elements of G, equipped with the ring structure inherited from the multiplication in G).

Here, both \mathbb{Z} and A are equipped with the action of $\mathbb{Z}[G]$ in which all the generators of G act trivially.

Let G be the cyclic group of order four, so that $\mathbb{Z}[G]=\mathbb{Z}[x] /\left(x^{4}-1\right)$. Compute the group homology $H_{i}(G, \mathbb{Z})$ for all i.

The group algebra $\mathbb{Z}[G]$ is the same as the ring $\mathbb{Z}[x] /\left(x^{4}-1\right)$. So, by definition, $H_{i}(G, \mathbb{Z})=$ $\operatorname{Tor}_{i}^{R}(\mathbb{Z}, \mathbb{Z})$.
A free resolution of \mathbb{Z} is given by

$$
\ldots R \xrightarrow{1 \mapsto 1+x+x^{2}+x^{3}} R \xrightarrow{1 \mapsto 1-x} R \xrightarrow{1 \mapsto 1+x+x^{2}+x^{3}} R \xrightarrow{1 \mapsto 1-x} R \rightarrow \mathbb{Z}
$$

Removing the last term and tensoring by \mathbb{Z}, we get

$$
\cdots \mathbb{Z} \xrightarrow{1+x+x^{2}+x^{3}} \mathbb{Z} \xrightarrow{1-x} \mathbb{Z} \xrightarrow{1+x+x^{2}+x^{3}} \mathbb{Z} \xrightarrow{1-x} \mathbb{Z} \rightarrow 0
$$

which is

$$
\ldots \mathbb{Z} \xrightarrow{4} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{4} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow 0
$$

So the homology is \mathbb{Z} in degree zero, $\mathbb{Z} / 4$ is odd degrees, and zero otherwise.
Exercise 3. Compute the structure of the graded ring $\operatorname{Ext}_{\mathbb{Z}}^{*}(\mathbb{Z} / 2, \mathbb{Z} / 2)$.
Compute the structure of the graded ring $\operatorname{Ext}_{\mathbb{Z} / 8}^{*}(\mathbb{Z} / 4, \mathbb{Z} / 4)$.
$\operatorname{Ext}_{\mathbb{Z}}^{*}(\mathbb{Z} / 2, \mathbb{Z} / 2)$ is $\mathbb{Z} / 2$ in degree $0, \mathbb{Z} / 2$ in degree 1 and zero in all other degrees. There's only one ring with that structure, namely $(\mathbb{Z} / 2)[x] /\left(x^{2}\right)$.

Let $R:=\mathbb{Z} / 8$ and let $P_{\bullet}:=(R \stackrel{4}{\leftarrow} R \stackrel{2}{\leftarrow} R \stackrel{4}{\leftarrow} R \ldots)$ be a resolution of $\mathbb{Z} / 4$. Then the generator y of $\operatorname{Ext}^{1}(\mathbb{Z} / 4, \mathbb{Z} / 4)=\mathbb{Z} / 2$ is given by

and the generator z of $\operatorname{Ext}^{2}(\mathbb{Z} / 4, \mathbb{Z} / 4)=\mathbb{Z} / 2$ is given by

To check that $y^{2}=0$ in the ring $\operatorname{Ext}^{*}(\mathbb{Z} / 4, \mathbb{Z} / 4)$, one composes the chain maps as follows:

This gives $2 \cdot z$, which is zero. So $\operatorname{Ext}^{*}(\mathbb{Z} / 4, \mathbb{Z} / 4)=(\mathbb{Z} / 4)[y, z] /\left(2 y, y^{2}, 2 z\right)$, where y is in degree 1 , and z is in degree 2 .

