Homological algebra (Oxford, fall 2017)

André Henriques

Problem sheet 1: (hand in Monday Oct. 16th at noon, or Monday Oct. 23rd at noon)

Exercise 1. Construct an example of a chain complex of \mathbb{Z} -modules C_{\bullet} such that: (1) each \mathbb{Z} -module C_n is free,

(2) the only non-zero homology group of C_{\bullet} is in degree zero, and it is isomorphic to $\mathbb{Z}/2$.

Exercise 2. An abelian group A is called 2-*divisible* if the map $A \to A : a \mapsto 2a$ is surjective. Construct an example of a chain complex of abelian groups C_{\bullet} such that:

(1) each abelian group C_n is 2-divisible,

(2) the only non-zero homology group of C_{\bullet} is in degree zero, and it is isomorphic to $\mathbb{Z}/2$.

Exercise 3. Let k be a field, and let R := k[x, y]. Construct a chain complex of R-modules C_{\bullet} s.t.: (1) each R-module C_n is free,

(2) the only non-zero homology group of C_{\bullet} is in degree zero, and it is isomorphic to k. Repeat this exercise for the rings R = k[x, y, z] and R = k[x, y, z, t].

Exercise 4. Let k be a field. Prove that any chain complex of k-vector space is a direct sum of chain complexes of the following form:

(1) ... $\rightarrow 0 \rightarrow 0 \rightarrow V \xrightarrow{=} V \rightarrow 0 \rightarrow 0 \rightarrow ...$, where the two non-zero spaces are in degrees n and n-1, (2) ... $\rightarrow 0 \rightarrow 0 \rightarrow W \rightarrow 0 \rightarrow 0 \rightarrow ...$, where the unique non-zero space is in degree n.

Exercise 5. Let C_{\bullet} be the chain complex of \mathbb{F}_2 -vector spaces associated to a polyhedral complex X, as discussed in class (see Application 1.1.3 in the book).

Describe C_{\bullet} and compute its homology when X is the 1-skeleton of a tetrahedron.

Describe C_{\bullet} and compute its homology when X is a 2-dimensional torus.

Exercise 6. Show that for a short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the following three conditions are equivalent:

- (1) The sequence $0 \to A \to B \to C \to 0$ is isomorphic to one of the form $0 \to A \to A \oplus B \to B \to 0$.
- (2) There exists a section $s: C \to B$ of the map g.
- (2) There exists a retraction $r: B \to A$ of the map f.

Exercise 7. Provide an example of a short exact sequence of abelian groups $0 \to A \to B \to C \to 0$ such that the corresponding chain complex $0 \to A/2A \to B/2B \to C/2C \to 0$ is not exact. Prove that the map $B/2B \to C/2C$ is always surjective.

Prove that we always have $\operatorname{im}(A/2A \to B/2B) = \operatorname{ker}(B/2B \to C/2C)$.

Exercise 8. Let A be a set, and suppose that we are given a chain complex C^{α}_{\bullet} for every $\alpha \in A$. Then we can form the chain complexes $\bigoplus_{\alpha \in A} C^{\alpha}_{\bullet}$ and $\prod_{\alpha \in A} C^{\alpha}_{\bullet}$. Prove that, for every $n \in \mathbb{Z}$, we have

$$H_n\left(\bigoplus_{\alpha\in A}C^{\alpha}_{\bullet}\right) = \bigoplus_{\alpha\in A}H_n(C^{\alpha}_{\bullet}) \quad \text{and} \quad H_n\left(\prod_{\alpha\in A}C^{\alpha}_{\bullet}\right) = \prod_{\alpha\in A}H_n(C^{\alpha}_{\bullet})$$