Homological algebra (Oxford, fall 2017)

André Henriques

Problem sheet 2: (hand in Monday Oct. 30th at noon, or Monday Nov. 6th at noon)

Exercise 1. Prove that, in the category of free abelian groups, the cokerel of the map $2: \mathbb{Z} \to \mathbb{Z}$ is the zero group.

Exercise 2. Prove that, in the category of *R*-modules, a morphism $f: M \to N$ is an epimorphism if and only if it is surjective, and a monomorphism if and only if it is injective.

Exercise 3. Let $f : A \to B$ be a morphism in an abelian category. Prove that the morphism $\ker(f) \to A$ is always a monomorphism. Prove that the morphism $B \to \operatorname{coker}(f)$ is always an epimorphism.

Exercise 4. Let $A_{\bullet}, B_{\bullet} \in Ch(\mathcal{A})$ be chain complexes in an abelian category \mathcal{A} , and let $f_{\bullet} : A_{\bullet} \to B_{\bullet}$ be a morphism in $Ch(\mathcal{A})$. Let $K_n := \ker(f_n)$, with structure morphism $\iota_n : K_n \to A_n$. \triangleright Show that the differentials $d_n^A : A_n \to A_{n-1}$ induce morphisms $d_n^K : K_n \to K_{n-1}$, and that the

Show that the differentials $d_n^{-}: A_n \to A_{n-1}$ induce morphisms $d_n^{-}: K_n \to K_{n-1}$, and that the latter satisfy $d_n^K \circ d_{n+1}^K = 0$.

 \triangleright Show that the morphisms $\iota_n : K_n \to A_n$ assemble to a morphism of chain complexes $\iota_{\bullet} : K_{\bullet} \to A_{\bullet}$, and that the latter exhibits K_{\bullet} as the kernel of f_{\bullet} .

Exercise 5. Compute the long exact sequence associated to the following short exact sequence of chain complexes:

$$\begin{array}{c} \downarrow 0 & \vdots & \downarrow \cdot s & \vdots & \downarrow 0 \\ 0 & \longrightarrow \mathbb{Z}/4 & \xrightarrow{\cdot 4} & \mathbb{Z}/16 & \longrightarrow \mathbb{Z}/4 & \longrightarrow 0 \\ & \downarrow 0 & & \downarrow \cdot s & & \downarrow 0 \\ 0 & \longrightarrow \mathbb{Z}/4 & \xrightarrow{\cdot 4} & \mathbb{Z}/16 & \longrightarrow \mathbb{Z}/4 & \longrightarrow 0 \\ & \downarrow 0 & & \downarrow \cdot s & & \downarrow 0 \\ 0 & \longrightarrow \mathbb{Z}/4 & \xrightarrow{\cdot 4} & \mathbb{Z}/16 & \longrightarrow \mathbb{Z}/4 & \longrightarrow 0 \\ & \downarrow 0 & & \downarrow \cdot s & & \downarrow 0 \\ & \downarrow 0 & & & \downarrow \cdot s & & \downarrow 0 \\ & & \vdots & \vdots & \vdots \end{array}$$

Exercise 6. Provide an example of a short exact sequence of chain complexes $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ such that:

i) the only non-zero homology group of A_{\bullet} is in degree n-1, and is isomorphic to \mathbb{Z} . ii) the only non-zero homology group of C_{\bullet} is in degree n, and is isomorphic to \mathbb{Z} .

iii) The connecting homomorphism $\partial_n : H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$ is an isomorphism.

Exercise 7. Provide an example of a short exact sequence of chain complexes $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ with the property that:

i) the only non-zero homology group of A_{\bullet} is in degree zero, and is isomorphic to $\mathbb{Z}/2$.

ii) the only non-zero homology group of C_{\bullet} is in degree one, and is isomorphic to $\mathbb{Z}/2$.

iii) The connecting homomorphism $\partial_1 : H_1(C_{\bullet}) \to H_0(A_{\bullet})$ is an isomorphism.

iv) The groups A_n , B_n , and C_n are all free abelian groups.

Exercise 8. Let $0 \to M \to N \to P \to 0$ be a short exact sequence of *R*-modules.

Give an example of a short exact sequence of chain complexes $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ such that:

i) the only non-zero homology group of A_{\bullet} is in degree zero, and is isomorphic to N.

ii) the only non-zero homology group of B_{\bullet} is in degree zero, and is isomorphic to P.

ii) the only non-zero homology group of C_{\bullet} is in degree one, and is isomorphic to M.

iii) The long exact sequence associated to the short exact sequence $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ recovers the short exact sequence $0 \to M \to N \to P \to 0$ we started with.