Homological algebra (Oxford, fall 2017)

André Henriques

Problem sheet 3: (hand in Monday Nov. 13th at noon, or Monday Nov. 20th at noon)

Exercise 1. Let $\mathbf{A b} \mathbf{b}_{\text {fin }}$ denote the category of finite abelian groups.
\triangleright Prove that the only projective object of $\mathbf{A b}_{\text {fin }}$ is the zero group.
\triangleright Prove that the only injective object of $\mathbf{A b} \mathbf{b}_{\mathrm{fin}}$ is the zero group.
Exercise 2. Let $R:=\mathbb{Z}[\sqrt{-5}]$, and let $M \subset R$ be the ideal generated by $1+\sqrt{-5}$ and $1-\sqrt{-5}$. Prove that the map $R \oplus R \rightarrow M \oplus M$ given by $(1,0) \mapsto(1+\sqrt{-5}, 2)$ and $(0,1) \mapsto(2,1-\sqrt{-5})$ is an isomorphism. Deduce that M is a projective R-module.

Exercise 3. Prove that $\mathbb{Z} / n \mathbb{Z}$ is an injective $\mathbb{Z} / n \mathbb{Z}$-module. (without using the Baer's criterion)
Exercise 4. An abelian group A is called divisible if $\forall a \in A$ and $\forall n \in \mathbb{N}, \exists b \in A$ such that $n b=a$. Prove that every divisible abelian group is an injective \mathbb{Z}-module. (without using the Baer's criterion)
Exercise 5. Let $a, b, n \in \mathbb{N}$ be such that $a \mid n$ and $b \mid n$.
Let $P_{\bullet}=\left(P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow \ldots\right)$ be a projective resolution of \mathbb{Z} / a as a \mathbb{Z} / n-module. Compute the homology of $P_{\mathbf{0}} / b:=\left(P_{0} / b P_{0} \leftarrow P_{1} / b P_{1} \leftarrow P_{2} / b P_{2} \leftarrow \ldots\right)$. Prove that the answer is independent of the choice of projective resolution $P_{\text {. }}$.

Exercise 6. Let $a, b, n \in \mathbb{N}$ be such that $a \mid n$ and $b \mid n$.
Let $P_{\bullet}=\left(P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow \ldots\right)$ be a projective resolution of \mathbb{Z} / a as a \mathbb{Z} / n-module. Compute the cohomology of $\operatorname{Hom}\left(P_{\mathbf{\bullet}}, \mathbb{Z} / b \mathbb{Z}\right):=\left[\operatorname{Hom}\left(P_{0}, \mathbb{Z} / b\right) \rightarrow \operatorname{Hom}\left(P_{1}, \mathbb{Z} / b\right) \rightarrow \operatorname{Hom}\left(P_{2}, \mathbb{Z} / b\right) \rightarrow \ldots\right]$. Prove that the answer is independent of the choice of projective resolution P_{\bullet}.

Exercise 7. Let $a, b, n \in \mathbb{N}$ be such that $a \mid n$ and $b \mid n$.
Let $I^{\bullet}=\left(I^{0} \rightarrow I^{1} \rightarrow I^{2} \rightarrow \ldots\right)$ be an injective resolution of \mathbb{Z} / b as a \mathbb{Z} / n-module. Compute the cohomology of $\operatorname{Hom}\left(\mathbb{Z} / a \mathbb{Z}, I^{\bullet} \mathbb{Z}\right):=\left[\operatorname{Hom}\left(\mathbb{Z} / a, I^{0}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z} / a, I^{1}\right) \rightarrow \operatorname{Hom}\left(\mathbb{Z} / a, I^{2}\right) \rightarrow \ldots\right]$. Prove that the answer is independent of the choice of injective resolution I^{\bullet}.

Exercise 8. Let $P_{\bullet} \rightarrow M$ be a projective resolution, let $Q_{\bullet} \rightarrow N$ be a projective resolution, and let $0 \rightarrow M \rightarrow E \rightarrow N \rightarrow 0$ be a short exact sequence.

Show that there exists a projective resolution $S \bullet \rightarrow E$ that fits into a short exact sequence of aumgented chain complexes

Hint: Set $S_{n}:=P_{n} \oplus Q_{n}$.

