Homological algebra (Oxford, fall 2017)

André Henriques

Problem sheet 3: (hand in Monday Nov. 13th at noon, or Monday Nov. 20th at noon)

Exercise 1. Let \mathbf{Ab}_{fin} denote the category of finite abelian groups. \triangleright Prove that the only projective object of \mathbf{Ab}_{fin} is the zero group.

 \triangleright Prove that the only injective object of $\mathbf{Ab}_{\mathrm{fin}}$ is the zero group.

Exercise 2. Let $R := \mathbb{Z}[\sqrt{-5}]$, and let $M \subset R$ be the ideal generated by $1 + \sqrt{-5}$ and $1 - \sqrt{-5}$. Prove that the map $R \oplus R \to M \oplus M$ given by $(1,0) \mapsto (1 + \sqrt{-5}, 2)$ and $(0,1) \mapsto (2, 1 - \sqrt{-5})$ is an isomorphism. Deduce that M is a projective R-module.

Exercise 3. Prove that $\mathbb{Z}/n\mathbb{Z}$ is an injective $\mathbb{Z}/n\mathbb{Z}$ -module. (without using the Baer's criterion)

Exercise 4. An abelian group A is called *divisible* if $\forall a \in A$ and $\forall n \in \mathbb{N}$, $\exists b \in A$ such that nb = a. Prove that every divisible abelian group is an injective \mathbb{Z} -module. (without using the Baer's criterion)

Exercise 5. Let $a, b, n \in \mathbb{N}$ be such that a|n and b|n.

Let $P_{\bullet} = (P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow ...)$ be a projective resolution of \mathbb{Z}/a as a \mathbb{Z}/n -module. Compute the homology of $P_{\bullet}/b := (P_0/bP_0 \leftarrow P_1/bP_1 \leftarrow P_2/bP_2 \leftarrow ...)$. Prove that the answer is independent of the choice of projective resolution P_{\bullet} .

Exercise 6. Let $a, b, n \in \mathbb{N}$ be such that a|n and b|n.

Let $P_{\bullet} = (P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \ldots)$ be a projective resolution of \mathbb{Z}/a as a \mathbb{Z}/n -module. Compute the cohomology of $\operatorname{Hom}(P_{\bullet}, \mathbb{Z}/b\mathbb{Z}) := [\operatorname{Hom}(P_0, \mathbb{Z}/b) \to \operatorname{Hom}(P_1, \mathbb{Z}/b) \to \operatorname{Hom}(P_2, \mathbb{Z}/b) \to \ldots]$. Prove that the answer is independent of the choice of projective resolution P_{\bullet} .

Exercise 7. Let $a, b, n \in \mathbb{N}$ be such that a|n and b|n.

Let $I^{\bullet} = (I^0 \to I^1 \to I^2 \to ...)$ be an injective resolution of \mathbb{Z}/b as a \mathbb{Z}/n -module. Compute the cohomology of $\operatorname{Hom}(\mathbb{Z}/a\mathbb{Z}, I^{\bullet}\mathbb{Z}) := [\operatorname{Hom}(\mathbb{Z}/a, I^0) \to \operatorname{Hom}(\mathbb{Z}/a, I^1) \to \operatorname{Hom}(\mathbb{Z}/a, I^2) \to ...]$. Prove that the answer is independent of the choice of injective resolution I^{\bullet} .

Exercise 8. Let $P_{\bullet} \to M$ be a projective resolution, let $Q_{\bullet} \to N$ be a projective resolution, and let $0 \to M \to E \to N \to 0$ be a short exact sequence.

Show that there exists a projective resolution $S_{\bullet} \to E$ that fits into a short exact sequence of aumgented chain complexes

Hint: Set $S_n := P_n \oplus Q_n$.