C2.1 Lie algebras

Solutions to problem sheet 4

Throughout this sheet we assume that all Lie algebras and all representations discussed
are finite dimensional unless the contrary is explicitly stated, and we work over a field
k which is algebraically closed of characteristic zero.

1. Let g be a simple Lie algebra. Show that any nonzero trace form on g is a
multiple of the Killing form. (Hint: Show that the form can be used to identify
g with g* as a g-representation. See Problem Sheet 3.)

Solution: Since g is simple, the adjoint representation is irreducible (recall from
a previous problem sheet). Now a symmetric bilinear form ¢: gx g — k induces
a linear map 6: g — g¢* via 0(z)(y) = t(z,y). If ¢t is nondegenerate, then this
map is an isomorphism of vector spaces (this is just the definition of nondegen-
eracy, as g is finite dimensional). Now we claim that if the form is invariant,
then 0 is an isomorphism of g-representations: indeed if z,y, z € g then

2(0(y))(2) = =0(y) ([, 2]) = —t(y, [z, 2]) = —t([y, 2], 2) = t(ad(z)(y), 2) = O(ad(2)(y))(2)-

Note this is an equivalence, that is, a symmetric bilinear form is invariant if
and only if the associated linear map from g to g* is a g-homomorphism. Now
if V is an irreducible representation, V* is also (since if U is a subrepresenta-
tion of V, UY is a subrepresentation of V*). Thus Schur’s Lemma shows that
there is, up to a scalar, a unique isomorphism of g-representations from V' to
V*if V and V* are isomorphic, and no nonzero such map otherwise. Trans-
lating this via the map ¢ +— ¢ we see that, up to scalars, there can be at most
one nondegenerate invariant symmetric bilinear form on g. Since  is certainly
one such, g = g* and so the space of invariant symmetric bilinear forms on g is
one-dimensional as claimed. O

2. Show that homomorphisms between semisimple Lie algebras are compat-
ible with the Jordan decomposition, that is, if g1, go are semisimple Lie algeb-
ras, and ¢: g1 — go is a homomorphism, then if + = s + n is the Jordan de-
composition of z € g, ¢(x) = ¢(s) + ¢(n) is the Jordan decomposition of ¢(x)
in go. (For this part you may assume the fact, stated in lectures, that if v = s +n
is the Jordan decomposition of x and p: g — gl(V') is a representation, then p(s) is
semsimple and p(n) is nilpotent.)

Solution: Given an arbitrary homomorphism ¢: g; — g2, we obtain a repres-
entation of g; on g, via the composition p = adg, o¢: g1 — gl(g2) (where ad,,
denotes the adjoint representation of g;). The compatibility of the Jordan de-
composition with representations implies that if x = s +n is the Jordan decom-
position of « € g1, then adg,(¢(s)) is semisimple and adg, (¢(n)) is nilpotent.
Since clearly and [¢(s), #(n)] = ¢([s,n]) = 0, it follows by uniqueness that
() = ¢(s) + ¢(n) is the Jordan decomposition of ¢(x) as required. O

3. Use Weyl’s theorem to give an alternative proof of the fact that any de-
rivation of a semisimple Lie algebra g is inner. (Hint: Suppose that ¢ is a



derivation, show that V' = k @ g has the structure of a g representation via
z(a,y) = (0,ad(z) + [z,y]), and consider a complement to the subrepresenta-
tion g.)

Solution: We first check that V' is a representation: for any a € k,z,y,z € g, we
have

(z.y —y.x)(a,z) = x(0,a.0(y) + [y, 2]) — y(0,a.6(x) + [z, 2]
Y, Z“) - (07 [y,a5(x) + [33 Z])

0, [z,a.0(y) + )
= (0,alz,6(y)] + [z, [y, 2]] + a[d(z),y] — [y, [z, 2]])
= (0,ad([z,y]) + [[z, ], 2])
= [z,9y](a, 2)

where in the second last line we use the Jacobi identity and the definition of a
derivation. Now it is clear that M = {(0, ) : € g} is a subrepresentation of V'
(isomorphic to the adjoint representation) and the quotient V//M is isomorphic
to the trivial representation. By Weyl’s theorem M has a complementary sub-
representation L, which is the trivial representation. But then if (a,z) € Visa
nonzero element of M, we may scale it so that ¢ = —1, and then forall z € g
we have z(—1, z) = 0, which implies —d(x) + [z, 2] =0, thatis 6 = ad(z). O

4. Let g = sp,,,(C) be the symplectic Lie algebra. Show that b, the space of
matrices in g which are diagonal, is a Cartan subalgebra, and find the roots of

5]32”(@)

Solution: sp,,,: For a matrix A , in this question we will use the notation *A to
denote the matrix obtained by flipping the entries along the “anti-diagonal”, so
that if A = (a;;) then the (i, j)-th entry of "4 is ay,+1—jnt1—;. The Lie algebra
5, then consists of block matrices < g g > .suchthat —A='Dand'B =
B, 'C = C. Again, let h denote the intersection of sp,, with the diagonal

matrices. Then ,
[7 = {Z A By

=1

and )\7, = _)\2n+1i} .

Hence we may identify

b =Pe;

i=1

where ef(h) = A;. We can write

P, = b @ @ C(Eij — Eant1-i2n+1-5)®

i#j<n
n
@ @ C(Eintj+ Ent1—jont1-i) B @ Eiony1—i
1<i+j<n i=1
n
& @ C(Entij + Eont1-jn+1-i) © @ Eopy1-ii
1<itj<n i=1



*

and one calculates the weights in each case to be e} — €7, e; + €], 2ef, —e} — €]
and —2¢;. Hence b is a Cartan subalgebra and R is of type C,,. O

5. Let g be a complex semisimple Lie algebra and  C g a Cartan subalgebra. If
® C b* is the corresponding root system find an expression for the dimension
of g in terms of ®. (In particular, the dimension of g is determined by the root
system).

Solution: In lectures we have seen the decomposition
g=he P oo
acd

We also saw that dim g, = 1 for all & € ®. Hence

dimg = dim b + |®| = rank(®) + |P|.

6. Suppose that g is a Lie subalgebra of gl(V'). Show that if V' is irreducible as
a g-representation and tr(p(z)) = 0 for all z € g, then g is semisimple.

Solution: Let s be the radical of g. Then since s is solvable, by Lie’s theorem
there is a nonzero vector v and a linear map A: s/D(s) — k such that p(z)(v) =
A(z).v. But then as s is an ideal, we see that for all z € g, s € s we have

sz(v) = [s,z] + xs(v)
= A(s)z(v)

by Lie’s Lemma. It follows the set of vectors {v € V : s(v) = A(s).v} is a
nonzero g-subrepresentation of V, so that since V' is irreducible it must be all
of V. But then the s C g N k.idy, and since we assume that tr(z) = 0 for all
x € g this is zero so that s = 0 as required. O

7. Let k be a field and let s¢ be the 3-dimensional k-Lie algebra with basis
{eo, €1, e2} and structure constants [e;, ;1] = e;+2 (Where we read the indices
modulo 3, so that we have for example [e2, eg] = e1).

i) Show that sy is a simple Lie algebra.

ii) Show that s is isomorphic to the Lie algebra (R?, A), where A is the cross
product.

iii) Show that sg (equivalently, (R3, A)) is not isomorphic to sly(R). (Hint:
You may show that (R?, A) does not have any nonzero elements z such
that ad(x) is diagonalisable.

iv) Show that s¢ = sl3(C).



Solution: To see that s, is simple, suppose that I is a nonzero ideal and let
x = aeg+bes +cez be anonzero element of I. Then [ey, [eg, x]] = [e1, bea —ceq] =
beg € I, and similarly we find aez, ce; € I also. Thus since x # 0, we must have
some e; in I, but then clearly all of {eg, e1, €2} lie in I so that I = sy as required.

By direct calculation we see that the image of the adjoint representation
ad: s, — gl;(k) (Where we use the basis {eg, 1, e3} to identify s, with k?) is
exactly the Lie algebra of skew-symmetric matrices, indeed we have:

0 —c b
ad(aeg + bey + ce2) = c 0 —a
—b a 0

which is clearly injective, so it follows sy is in fact isomorphic to (R3, A).

The characteristic polynomial of a skew-symmetric matrix as above is A(A?+
a® + b% + ¢?), thus when k = R, a non-zero skew-symmetric 3 x 3 matrix over
R has exactly one real eigenvalue. On the other hand, recall that sly(k) has a
basis {e, f, h} with structure constants [e, f] = h, [h,e] = 2e, [h, f] = —2f, thus
the action of ad(h) on sl2(R) is diagonalisable with 3 distinct eigenvalues. It
follows that we cannot have sg = sl3(R). When we take k = C however, we
can easily find a skew-symmetric matrix H with the required eigenvalues, and
then find the +2-eigenspaces of H to determine matrices £ and F (given H,
the equation [E, F] = H will normalize E, F up to a constant). Then we can
define an isomorphism from sl (C) viah — H, e+ E,and f — F.

For example, if you take H = 2ieg, and then we may take ' = e; + ieg, and
F = —e; +iep. There are many other options however: you can take e.g. H =
i\/§(€0 — 62), and then F = %60 — i61 + %62, and F' = 7(%60 + i61 + %62).

Note that this shows the classification of simple Lie algebras over charac-
teristic zero fields which are not algebraically closed is more delicate than the
algebraically closed case. O

Solution: Question 8: For the classification of the Dynkin diagrams see
James Humphreys, Introduction to Lie Algebras and Representation The-
ory, Springer, 1972, end of Chapter III. O



