
C2.1 Lie algebras
Solutions to problem sheet 4

Throughout this sheet we assume that all Lie algebras and all representations discussed
are finite dimensional unless the contrary is explicitly stated, and we work over a field
k which is algebraically closed of characteristic zero.

1. Let g be a simple Lie algebra. Show that any nonzero trace form on g is a
multiple of the Killing form. (Hint: Show that the form can be used to identify
g with g∗ as a g-representation. See Problem Sheet 3.)

Solution: Since g is simple, the adjoint representation is irreducible (recall from
a previous problem sheet). Now a symmetric bilinear form t : g×g → k induces
a linear map θ : g → g∗ via θ(x)(y) = t(x, y). If t is nondegenerate, then this
map is an isomorphism of vector spaces (this is just the definition of nondegen-
eracy, as g is finite dimensional). Now we claim that if the form is invariant,
then θ is an isomorphism of g-representations: indeed if x, y, z ∈ g then

x(θ(y))(z) = −θ(y)([x, z]) = −t(y, [x, z]) = −t([y, x], z) = t(ad(x)(y), z) = θ(ad(x)(y))(z).

Note this is an equivalence, that is, a symmetric bilinear form is invariant if
and only if the associated linear map from g to g∗ is a g-homomorphism. Now
if V is an irreducible representation, V ∗ is also (since if U is a subrepresenta-
tion of V , U0 is a subrepresentation of V ∗). Thus Schur’s Lemma shows that
there is, up to a scalar, a unique isomorphism of g-representations from V to
V ∗ if V and V ∗ are isomorphic, and no nonzero such map otherwise. Trans-
lating this via the map θ 7→ t we see that, up to scalars, there can be at most
one nondegenerate invariant symmetric bilinear form on g. Since κ is certainly
one such, g ∼= g∗ and so the space of invariant symmetric bilinear forms on g is
one-dimensional as claimed.

2. Show that homomorphisms between semisimple Lie algebras are compat-
ible with the Jordan decomposition, that is, if g1, g2 are semisimple Lie algeb-
ras, and φ : g1 → g2 is a homomorphism, then if x = s + n is the Jordan de-
composition of x ∈ g1, φ(x) = φ(s) + φ(n) is the Jordan decomposition of φ(x)
in g2. (For this part you may assume the fact, stated in lectures, that if x = s + n
is the Jordan decomposition of x and ρ : g → gl(V ) is a representation, then ρ(s) is
semsimple and ρ(n) is nilpotent.)

Solution: Given an arbitrary homomorphism φ : g1 → g2, we obtain a repres-
entation of g1 on g2 via the composition ρ = adg2

◦φ : g1 → gl(g2) (where adg2

denotes the adjoint representation of g2). The compatibility of the Jordan de-
composition with representations implies that if x = s+n is the Jordan decom-
position of x ∈ g1, then adg2

(φ(s)) is semisimple and adg2
(φ(n)) is nilpotent.

Since clearly and [φ(s), φ(n)] = φ([s, n]) = 0, it follows by uniqueness that
φ(x) = φ(s) + φ(n) is the Jordan decomposition of φ(x) as required.

3. Use Weyl’s theorem to give an alternative proof of the fact that any de-
rivation of a semisimple Lie algebra g is inner. (Hint: Suppose that δ is a
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derivation, show that V = k ⊕ g has the structure of a g representation via
x(a, y) = (0, aδ(x) + [x, y]), and consider a complement to the subrepresenta-
tion g.)

Solution: We first check that V is a representation: for any a ∈ k, x, y, z ∈ g, we
have

(x.y − y.x)(a, z) = x(0, a.δ(y) + [y, z])− y(0, a.δ(x) + [x, z])

= (0, [x, a.δ(y) + [y, z]])− (0, [y, a.δ(x) + [x, z])

= (0, a[x, δ(y)] + [x, [y, z]] + a[δ(x), y]− [y, [x, z]])

= (0, aδ([x, y]) + [[x, y], z])

= [x, y](a, z).

where in the second last line we use the Jacobi identity and the definition of a
derivation. Now it is clear that M = {(0, x) : x ∈ g} is a subrepresentation of V
(isomorphic to the adjoint representation) and the quotient V/M is isomorphic
to the trivial representation. By Weyl’s theorem M has a complementary sub-
representation L, which is the trivial representation. But then if (a, z) ∈ V is a
nonzero element of M , we may scale it so that a = −1, and then for all x ∈ g

we have x(−1, z) = 0, which implies −δ(x) + [x, z] = 0, that is δ = ad(z).

4. Let g = sp2n(C) be the symplectic Lie algebra. Show that h, the space of
matrices in g which are diagonal, is a Cartan subalgebra, and find the roots of
sp2n(C).

Solution: sp2n: For a matrix A , in this question we will use the notation tA to
denote the matrix obtained by flipping the entries along the “anti-diagonal”, so
that if A = (aij) then the (i, j)-th entry of tA is an+1−j,n+1−i. The Lie algebra

sp2n then consists of block matrices

(

A B
C D

)

. such that −A = tD and tB =

B, tC = C. Again, let h denote the intersection of sp2n with the diagonal
matrices. Then

h =

{

2n
∑

i=1

λiEii

∣

∣

∣

∣

∣

and λi = −λ2n+1−i

}

.

Hence we may identify

h∗ =

n
⊕

i=1

e∗i

where e∗i (h) = λi. We can write

sp2n = h⊕
⊕

i6=j≤n

C(Eij − E2n+1−i,2n+1−j)⊕

⊕
⊕

1≤i+j≤n

C(Ei,n+j + En+1−j,2n+1−i)⊕
n

⊕

i=1

Ei,2n+1−i

⊕
⊕

1≤i+j≤n

C(En+i,j + E2n+1−j,n+1−i)⊕
n

⊕

i=1

E2n+1−i,i
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and one calculates the weights in each case to be e∗i − e∗j , e∗i + e∗j , 2e∗i , −e∗i − e∗j
and −2e∗i . Hence h is a Cartan subalgebra and R is of type Cn.

5. Let g be a complex semisimple Lie algebra and h ⊂ g a Cartan subalgebra. If
Φ ⊂ h∗ is the corresponding root system find an expression for the dimension
of g in terms of Φ. (In particular, the dimension of g is determined by the root
system).

Solution: In lectures we have seen the decomposition

g = h⊕
⊕

α∈Φ

gα.

We also saw that dim gα = 1 for all α ∈ Φ. Hence

dim g = dim h+ |Φ| = rank(Φ) + |Φ|.

6. Suppose that g is a Lie subalgebra of gl(V ). Show that if V is irreducible as
a g-representation and tr(ρ(x)) = 0 for all x ∈ g, then g is semisimple.

Solution: Let s be the radical of g. Then since s is solvable, by Lie’s theorem
there is a nonzero vector v and a linear map λ : s/D(s) → k such that ρ(x)(v) =
λ(x).v. But then as s is an ideal, we see that for all x ∈ g, s ∈ s we have

sx(v) = [s, x] + xs(v)

= λ(s)x(v)

by Lie’s Lemma. It follows the set of vectors {v ∈ V : s(v) = λ(s).v} is a
nonzero g-subrepresentation of V , so that since V is irreducible it must be all
of V . But then the s ⊆ g ∩ k.idV , and since we assume that tr(x) = 0 for all
x ∈ g this is zero so that s = 0 as required.

7. Let k be a field and let sk be the 3-dimensional k-Lie algebra with basis
{e0, e1, e2} and structure constants [ei, ei+1] = ei+2 (where we read the indices
modulo 3, so that we have for example [e2, e0] = e1).

i) Show that sk is a simple Lie algebra.

ii) Show that sR is isomorphic to the Lie algebra (R3,∧), where ∧ is the cross
product.

iii) Show that sR (equivalently, (R3,∧)) is not isomorphic to sl2(R). (Hint:
You may show that (R3,∧) does not have any nonzero elements x such
that ad(x) is diagonalisable.

iv) Show that sC ∼= sl2(C).
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Solution: To see that sk is simple, suppose that I is a nonzero ideal and let
x = ae0+be1+ce2 be a nonzero element of I . Then [e1, [e0, x]] = [e1, be2−ce1] =
be0 ∈ I , and similarly we find ae2, ce1 ∈ I also. Thus since x 6= 0, we must have
some ei in I , but then clearly all of {e0, e1, e2} lie in I so that I = sk as required.

By direct calculation we see that the image of the adjoint representation
ad : sk → gl3(k) (where we use the basis {e0, e1, e3} to identify sk with k

3) is
exactly the Lie algebra of skew-symmetric matrices, indeed we have:

ad(ae0 + be1 + ce2) =





0 −c b
c 0 −a
−b a 0





which is clearly injective, so it follows sk is in fact isomorphic to (R3,∧).
The characteristic polynomial of a skew-symmetric matrix as above is λ(λ2+

a2 + b2 + c2), thus when k = R, a non-zero skew-symmetric 3 × 3 matrix over
R has exactly one real eigenvalue. On the other hand, recall that sl2(k) has a
basis {e, f, h} with structure constants [e, f ] = h, [h, e] = 2e, [h, f ] = −2f , thus
the action of ad(h) on sl2(R) is diagonalisable with 3 distinct eigenvalues. It
follows that we cannot have sR ∼= sl2(R). When we take k = C however, we
can easily find a skew-symmetric matrix H with the required eigenvalues, and
then find the ±2-eigenspaces of H to determine matrices E and F (given H ,
the equation [E,F ] = H will normalize E,F up to a constant). Then we can
define an isomorphism from sl2(C) via h 7→ H , e 7→ E, and f 7→ F .

For example, if you take H = 2ie0, and then we may take E = e1 + ie2, and
F = −e1 + ie2. There are many other options however: you can take e.g. H =
i
√
2(e0 − e2), and then E = 1√

2
e0 − ie1 +

1√
2
e2, and F = −( 1√

2
e0 + ie1 +

1√
2
e2).

Note that this shows the classification of simple Lie algebras over charac-
teristic zero fields which are not algebraically closed is more delicate than the
algebraically closed case.

Solution: Question 8: For the classification of the Dynkin diagrams see
James Humphreys, Introduction to Lie Algebras and Representation The-

ory, Springer, 1972, end of Chapter III.
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