C2.1a Lie algebras

Mathematical Institute, University of Oxford

Problem Sheet 2

- **1.** Let $\mathfrak g$ be a complex Lie algebra. Show that $\mathfrak g$ is nilpotent if and only if every 2-dimensional subalgebra of $\mathfrak g$ is abelian.
- **2.** Let V be a finite dimensional complex vector space and let $x,y\in\mathfrak{gl}(V)$ be linear maps. Suppose that x and y both commute with z=[x,y]. Show that z is a nilpotent endomorphism of V.
- **3.** Let V be a finite dimensional complex vector space. If $x \in \operatorname{End}(V)$, and $V = \bigoplus_{\lambda} V_{\lambda}$ is the decomposition of V into a direct sum of generalised eigenspaces of x, we define $x_s \in \operatorname{End}(V)$ to be the linear map given by $x_s(v) = \lambda .v$ for $v \in V_{\lambda}$. It is called the *semisimple* part of x. Clearly it is diagonalisable.
 - i) Show that x is regular if and only if x_s is regular.
 - ii) When is a semisimple (*i.e.* diagonalisable) element of $\mathfrak{gl}(V)$ regular?
 - iii) Exhibit a Cartan subalgebra of $\mathfrak{gl}(V)$, and describe the set of all regular elements of $\mathfrak{gl}(V)$.

Terminology: Note the following definitions: if (V,ϕ) is a representation of a Lie algebra \mathfrak{g} , then we say a subspace U < V is a *subrepresentation* if $\phi(x)(U) \subseteq U$ for all $x \in \mathfrak{g}$. Note that this implies that ϕ restricts to give a Lie algebra homomorphism from \mathfrak{g} to $\mathfrak{gl}(U)$. A nonzero representation is said to be *irreducible* or *simple* if it has no non-zero proper subrepresentation.

- **4.** Let $\mathfrak g$ be a Lie algebra. Suppose that the adjoint representation $\mathrm{ad}:\mathfrak g\to\mathfrak{gl}(\mathfrak g)$ is irreducible. What can you say about $\mathfrak g$?
- 5. Let $\mathfrak g$ be the set of complex matrices of the form $\begin{pmatrix} \alpha & \beta & \lambda \\ \gamma & \delta & \mu \\ 0 & 0 & 0 \end{pmatrix}$ where $\alpha+\delta=$
- 0. Show that $\mathfrak g$ is a Lie subalgebra of $\mathfrak{gl}_3(\mathbb C)$. Find the radical of $\mathfrak g$ and show that $\mathfrak g$ contains a subalgebra isomorphic to $\mathfrak g/\mathrm{rad}\mathfrak g$. Prove that the only ideal of $\mathfrak g$ strictly contained in $\mathrm{rad}\mathfrak g$ is $\{0\}$.
- **6.** Let \mathfrak{b}_n be the Lie algebra of upper triangular matrices in $\mathfrak{gl}_n(\mathsf{k})$. This is a solvable but not nilpotent Lie algebra. Find a Cartan subalgebra of \mathfrak{b}_n .