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1. Let κ denote the Killing form on gln(C) and let h, n+, n− denote the sub-
spaces of diagonal, strictly upper triangular and strictly lower triangular matrices
respectively.

i) Show that h is orthogonal to n+⊕n− and that the restriction of κ to n+⊕n−
is nondegenerate. (Hint: It is probably useful to calculate the values of the
Killing form on matrix coefficients).

ii) Calculate n⊥+.

iii) Describe the radical of the restriction of κ to h and conclude that the re-
striction of κ to sln(C) is nondegenerate.

2. Suppose g is a Lie algebra and that β is an invariant symmetric bilinear form
of g. ( Invariant means β([x, y], z) = β(x, [y, z]) for all x, y, z ∈ g.) Show that β
induces a linear map

τ : g → g∗, x 7→ β(x,−).

Viewing both g and g∗ as g-modules, show that τ is a g-module homomorph-
ism. Deduce that if β is nondegenerate, then g and g∗ are isomorphic as g-
modules.

3. Show that the Killing form for sln is given by:

κ(x, y) = 2n.tr(xy), x, y ∈ sln.

The next few questions of this exercise sheet classify all the irreducible finite dimen-
sional representations of sl2(C).

Recall that if we let

e =

(

0 1
0 0

)

, h =

(

1 0
0 −1

)

and f =

(

0 0
1 0

)

then e, f and h give a basis of sl2 with relations

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

Hence, a representation of sl2(C) consists of a vector space V over C together
with three endomorphisms E, F and H satisfying

HE − EH = 2E,HF − FH = −2F and EF − FE = H.

(We recover the representation φ : sl2(C) → gl(V ) by setting φ(e) = E, φ(f) =
F and φ(h) = H .)

We will also need a partial ordering on k: since k has characteristic zero it
contains a copy of Q, and we will say that a < b if b − a ∈ Q>0. If I ⊂ k is a
finite subset of k we say λ ∈ I is maximal if λ < µ implies µ /∈ I .

In the rest of this problem set we always assume that V is finite dimensional.
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4. a) Show that the endomorphisms E and H satisfy the relation

(H − (λ+ 2))kE = E(H − λ)k.

(Here λ ∈ C and we write λ instead of λ · idV .) Deduce that if v ∈ V be-
longs to the generalised λ-eigenspace of H , then Ev belongs to the gen-
eralised (λ+ 2)-eigenspace.

b) Deduce a similar statement for the action of F on the generalised eigen-
spaces of H .

c) Let λ be an eigenvalue for H which is a maximal element of the set of
eigenvalues of H in the sense described above. Use a) to show that EVλ =
0.

d) Use b) to deduce that for large enough n we have Fn(v) = 0.

5. a) Show the relation (for n ≥ 1)

HFn = FnH − 2nFn.

b) Show (n ≥ 1 as before)

EFn = FnE + nFn−1H − n(n− 1)Fn−1.

c) Deduce that, if v ∈ V is a vector such that Ev = 0 then

EnFnv = nEn−1Fn−1(H − (n− 1))v = n!

n
∏

i=1

(H − (i− 1))v.

6. Let λ be a maximal eigenvalue of H (in the above sense) and let Vλ denote
the generalised λ-eigenspace. Use 4(d) and 5(c) to deduce that H acts diagon-
alisably on Vλ and that λ is a non-negative integer.

7. a) Let λ be a maximal eigenvalue of H as in the previous question, and
choose a non-zero vector v ∈ Vλ. We know by Questions 4,5 and 6 that
Ev = 0 and that λ is an non-negative integer. Show the relations:

HF kv = (λ− 2k)F kv,

EF kv = k(λ− (k − 1))F k−1v.

Deduce that Fλ+1v = 0 and that the F iv for 0 ≤ i ≤ λ are linearly
independent and span a simple submodule of V .

b) Check that the above relations define an sl2(C)-module for any non-negative
integer λ. Deduce that there is (up to isomorphism) a unique simple mod-
ule V (λ) of dimension λ+ 1 for all non-negative integers λ.
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