C2.1a Lie algebras

Mathematical Institute, University of Oxford

Problem Sheet 3

1. Let κ denote the Killing form on $\mathfrak{gl}_n(\mathbb{C})$ and let $\mathfrak{h}, \mathfrak{n}_+, \mathfrak{n}_-$ denote the subspaces of diagonal, strictly upper triangular and strictly lower triangular matrices respectively.

- i) Show that h is orthogonal to n₊⊕n₋ and that the restriction of κ to n₊⊕n₋ is nondegenerate. (*Hint*: It is probably useful to calculate the values of the Killing form on matrix coefficients).
- ii) Calculate \mathfrak{n}_{+}^{\perp} .
- iii) Describe the radical of the restriction of κ to \mathfrak{h} and conclude that the restriction of κ to $\mathfrak{sl}_n(\mathbb{C})$ is nondegenerate.

2. Suppose g is a Lie algebra and that β is an invariant symmetric bilinear form of g. (Invariant means $\beta([x, y], z) = \beta(x, [y, z])$ for all $x, y, z \in \mathfrak{g}$.) Show that β induces a linear map

$$\tau: \mathfrak{g} \to \mathfrak{g}^*, \quad x \mapsto \beta(x, -).$$

Viewing both g and g^{*} as g-modules, show that τ is a g-module homomorphism. Deduce that if β is nondegenerate, then g and g^{*} are isomorphic as g-modules.

3. Show that the Killing form for \mathfrak{sl}_n is given by:

$$\kappa(x,y) = 2n.\operatorname{tr}(xy), \quad x,y \in \mathfrak{sl}_n.$$

The next few questions of this exercise sheet classify all the irreducible finite dimensional representations of $\mathfrak{sl}_2(\mathbb{C})$.

Recall that if we let

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

then e, f and h give a basis of \mathfrak{sl}_2 with relations

$$[h, e] = 2e, [h, f] = -2f$$
 and $[e, f] = h$.

Hence, a representation of $\mathfrak{sl}_2(\mathbb{C})$ consists of a vector space *V* over \mathbb{C} together with three endomorphisms *E*, *F* and *H* satisfying

$$HE - EH = 2E, HF - FH = -2F$$
 and $EF - FE = H$.

(We recover the representation $\phi : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(V)$ by setting $\phi(e) = E$, $\phi(f) = F$ and $\phi(h) = H$.)

We will also need a partial ordering on k: since k has characteristic zero it contains a copy of \mathbb{Q} , and we will say that a < b if $b - a \in \mathbb{Q}_{>0}$. If $I \subset k$ is a finite subset of k we say $\lambda \in I$ is *maximal* if $\lambda < \mu$ implies $\mu \notin I$.

In the rest of this problem set we always assume that *V* is *finite dimensional*.

4. a) Show that the endomorphisms *E* and *H* satisfy the relation

$$(H - (\lambda + 2))^k E = E(H - \lambda)^k.$$

(Here $\lambda \in \mathbb{C}$ and we write λ instead of $\lambda \cdot id_V$.) Deduce that if $v \in V$ belongs to the generalised λ -eigenspace of H, then Ev belongs to the generalised $(\lambda + 2)$ -eigenspace.

- b) Deduce a similar statement for the action of *F* on the generalised eigenspaces of *H*.
- c) Let λ be an eigenvalue for H which is a maximal element of the set of eigenvalues of H in the sense described above. Use a) to show that $EV_{\lambda} = 0$.
- d) Use b) to deduce that for large enough *n* we have $F^n(v) = 0$.
- **5.** a) Show the relation (for $n \ge 1$)

$$HF^n = F^n H - 2nF^n.$$

b) Show ($n \ge 1$ as before)

$$EF^{n} = F^{n}E + nF^{n-1}H - n(n-1)F^{n-1}.$$

c) Deduce that, if $v \in V$ is a vector such that Ev = 0 then

$$E^{n}F^{n}v = nE^{n-1}F^{n-1}(H - (n-1))v = n!\prod_{i=1}^{n}(H - (i-1))v.$$

6. Let λ be a maximal eigenvalue of H (in the above sense) and let V_{λ} denote the generalised λ -eigenspace. Use 4(d) and 5(c) to deduce that H acts diagonalisably on V_{λ} and that λ is a non-negative integer.

7. a) Let λ be a maximal eigenvalue of H as in the previous question, and choose a non-zero vector $v \in V_{\lambda}$. We know by Questions 4,5 and 6 that Ev = 0 and that λ is an non-negative integer. Show the relations:

$$HF^{k}v = (\lambda - 2k)F^{k}v,$$

$$EF^{k}v = k(\lambda - (k-1))F^{k-1}v.$$

Deduce that $F^{\lambda+1}v = 0$ and that the F^iv for $0 \le i \le \lambda$ are linearly independent and span a simple submodule of *V*.

b) Check that the above relations define an $\mathfrak{sl}_2(\mathbb{C})$ -module for any non-negative integer λ . Deduce that there is (up to isomorphism) a unique simple module $V(\lambda)$ of dimension $\lambda + 1$ for all non-negative integers λ .