C2.1a Lie algebras

Mathematical Institute, University of Oxford

Problem Sheet 3

1. Let κ denote the Killing form on $\mathfrak{gl}_n(\mathbb{C})$ and let $\mathfrak{h}, \mathfrak{n}_+$, \mathfrak{n}_- denote the subspaces of diagonal, strictly upper triangular and strictly lower triangular matrices respectively.

- i) Show that h is orthogonal to n_+ ⊕n_− and that the restriction of κ to n_+ ⊕n_− is nondegenerate. (*Hint*: It is probably useful to calculate the values of the Killing form on matrix coefficients).
- ii) Calculate \mathfrak{n}^{\perp}_+ .
- iii) Describe the radical of the restriction of κ to $\mathfrak h$ and conclude that the restriction of κ to $\mathfrak{sl}_n(\mathbb{C})$ is nondegenerate.

2. Suppose g is a Lie algebra and that β is an invariant symmetric bilinear form of $\mathfrak g$. (Invariant means $\beta([x,y], z) = \beta(x, [y, z])$ for all $x, y, z \in \mathfrak g$.) Show that β induces a linear map

$$
\tau: \mathfrak{g} \to \mathfrak{g}^*, \quad x \mapsto \beta(x, -).
$$

Viewing both $\mathfrak g$ and $\mathfrak g^*$ as $\mathfrak g$ -modules, show that τ is a $\mathfrak g$ -module homomorphism. Deduce that if β is nondegenerate, then g and g^* are isomorphic as gmodules.

3. Show that the Killing form for \mathfrak{sl}_n is given by:

$$
\kappa(x, y) = 2n \cdot \text{tr}(xy), \quad x, y \in \mathfrak{sl}_n.
$$

The next few questions of this exercise sheet classify all the irreducible finite dimensional representations of $\mathfrak{sl}_2(\mathbb{C})$ *.*

Recall that if we let

$$
e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}
$$

then *e*, *f* and *h* give a basis of \mathfrak{sl}_2 with relations

$$
[h, e] = 2e
$$
, $[h, f] = -2f$ and $[e, f] = h$.

Hence, a representation of $\mathfrak{sl}_2(\mathbb{C})$ consists of a vector space V over $\mathbb C$ together with three endomorphisms E , F and H satisfying

$$
HE-EH=2E, HF-FH=-2F \text{ and } EF-FE=H.
$$

(We recover the representation $\phi : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(V)$ by setting $\phi(e) = E$, $\phi(f) =$ *F* and $\phi(h) = H$.)

We will also need a partial ordering on k: since k has characteristic zero it contains a copy of \mathbb{Q} , and we will say that $a < b$ if $b - a \in \mathbb{Q}_{>0}$. If $I \subset k$ is a finite subset of k we say $\lambda \in I$ is *maximal* if $\lambda < \mu$ implies $\mu \notin I$.

In the rest of this problem set we always assume that V is *finite dimensional*.

4. a) Show that the endomorphisms E and H satisfy the relation

$$
(H - (\lambda + 2))^k E = E(H - \lambda)^k.
$$

(Here $\lambda \in \mathbb{C}$ and we write λ instead of $\lambda \cdot id_V$.) Deduce that if $v \in V$ belongs to the generalised λ -eigenspace of H, then Ev belongs to the generalised $(\lambda + 2)$ -eigenspace.

- b) Deduce a similar statement for the action of F on the generalised eigenspaces of H.
- c) Let λ be an eigenvalue for H which is a maximal element of the set of eigenvalues of H in the sense described above. Use a) to show that EV_{λ} = 0.
- d) Use b) to deduce that for large enough *n* we have $Fⁿ(v) = 0$.
- **5.** a) Show the relation (for $n \ge 1$)

$$
HF^n = F^n H - 2nF^n.
$$

b) Show ($n \geq 1$ as before)

$$
EF^{n} = F^{n}E + nF^{n-1}H - n(n-1)F^{n-1}.
$$

c) Deduce that, if $v \in V$ is a vector such that $Ev = 0$ then

$$
E^{n}F^{n}v = nE^{n-1}F^{n-1}(H - (n - 1))v = n!\prod_{i=1}^{n}(H - (i - 1))v.
$$

6. Let λ be a maximal eigenvalue of H (in the above sense) and let V_{λ} denote the generalised λ -eigenspace. Use 4(d) and 5(c) to deduce that H acts diagonalisably on V_{λ} and that λ is a non-negative integer.

7. a) Let λ be a maximal eigenvalue of *H* as in the previous question, and choose a non-zero vector $v \in V_\lambda$. We know by Questions 4,5 and 6 that $Ev = 0$ and that λ is an non-negative integer. Show the relations:

$$
HF^k v = (\lambda - 2k)F^k v,
$$

$$
EF^k v = k(\lambda - (k-1))F^{k-1}v.
$$

Deduce that $F^{\lambda+1}v = 0$ and that the $F^i v$ for $0 \leq i \leq \lambda$ are linearly independent and span a simple submodule of V .

b) Check that the above relations define an $\mathfrak{sl}_2(\mathbb{C})$ -module for any non-negative integer λ . Deduce that there is (up to isomorphism) a unique simple module $V(λ)$ of dimension $λ + 1$ for all non-negative integers $λ$.