C2.1a Lie algebras

Mathematical Institute, University of Oxford Michaelmas Term 2018

Problem Sheet 0 (not for handing in)

1. Let V be a finite dimensional vector space and let $A \subset \text{End}(V)$ denote a subspace consisting of commuting diagonalisable endomorphisms. Show that we may find a basis of V in which each element of A is represented by a diagonal matrix.

2. Let k be a field and let V be a k-vector space. If $x \in \text{End}(V)$, and $V = \bigoplus_{\lambda} V_{\lambda}$ is the decomposition of V into a direct sum of generalised eigenspaces of x, we define $x_s \in \text{End}(V)$ to be the linear map given by $x_s(v) = \lambda v$ for $v \in V_{\lambda}$. It is called the *semisimple* part of x. Clearly it is diagonalisable.

- i) Show that the element $x_n = x x_s$ is nilpotent, and check that x_s and x_n commute.
- ii) Show that if $x, y \in \text{End}(V)$ commute, and y is nilpotent, then the generalised eigenspaces of x and x + y coincide.

3. Let k be an infinite field (not necessarily algebraically closed or of characteristic zero), and suppose that V is a finite dimensional k-vector space. If U_1, U_2, \ldots, U_r are proper subspaces of V, show that $V \neq U_1 \cup U_2 \cup \ldots \cup U_r$.

There is an algebraic way to think about the idea of "infinitesimals". The next two questions of the sheet explore this idea a little. Let k be a field and let $D_{\rm k} = {\rm k}[t]/(t^2)$. Write ε for the image of t in $D_{\rm k}$, so that $\varepsilon^2 = 0$. We want to consider ${\rm Mat}_n(D_{\rm k})$ the space of $n \times n$ matrices over $D_{\rm k}$.

4. Show that $\operatorname{GL}_n(D_k)$, the group of invertible matrices over D_k is exactly the set:

$$\{A + \varepsilon B : A \in \operatorname{GL}_n(\mathsf{k}), B \in \operatorname{Mat}_n(\mathsf{k})\}.$$

The natural homomorphism $e: D_k \to k$ given by $\epsilon \mapsto 0$ induces a homomorphism of groups $e_n: \operatorname{GL}_n(D_k) \to \operatorname{GL}_n(k)$. Deduce that the kernel can be identified with $\operatorname{Mat}_n(k)$, *i.e.* $\mathfrak{gl}_n(k)$.

- 5. i) The determinant is defined for a matrix with entries in any commutative ring. For $X \in Mat_n(D_k)$ find det(X) in terms of the column vectors of A, B where $X = A + \varepsilon B$, $A, B \in Mat_n(k)$. In particular, show that if $X = I + \varepsilon B$ then det(X) = 1 if and only if tr(B) = 0.
 - ii) The special orthogonal group is defined to be

$$SO_n(\mathsf{k}) = \{ A \in GL_n(\mathsf{k}) : \det(A) = 1, A A^t = I \}.$$

Show that the kernel of the map $SO_n(D_k) \to SO_n(k)$ can be identified with

$$\mathfrak{so}_n(\mathsf{k}) = \{ X \in \mathfrak{gl}_n(\mathsf{k}) : X + X^t = 0 \}.$$

6. Read Appendix 1 in the lecture notes for a review of the relevant facts about symmetric bilinear forms needed for this lecture course.