Analytic Topology: Problem sheet 2

1. (i) X is said to be *countably compact* if every countable open covering has a finite subcovering. Prove that a T_1 space X is countably compact if and only if every infinite subset has a limit point in X .

(ii) X has a countable basis at x if there is a sequence $\{U_n : n \in \mathbb{N}\}\$ of open subsets, each containing x, such that, for each open $V \ni x$, there exists n such that $x \in U_n \subseteq V$, and X is first countable if it has a countable basis at every point $x \in X$. (So, for example, metric spaces are first countable.) Prove that a countably compact, first countable, Hausdorff space is regular.

2. Show that a metric space is Lindelöf if and only if it is separable, if and only if it is second countable.

3. (i) $\mathscr B$ is a basis for a filter $\mathscr F$ on a set X if and only if

$$
\mathscr{F} = \{ F \subseteq X : (\exists B \in \mathscr{B}) (B \subseteq F) \}.
$$

 \mathscr{B} is a filter-basis on X if and only if

(a) $\varnothing \notin \mathscr{B}$ and $\mathscr{B} \neq \varnothing$,

(b) if $B_1, B_2 \in \mathcal{B}$, then $\exists B_3 \in \mathcal{B}$ such that $B_3 \subseteq B_1 \cap B_2$.

Prove that a family of subsets of a set X is a filter-basis if and only if it is the basis of some filter on X.

(ii) Suppose that \mathcal{N}_x is the filter of all neighbourhoods of a point x. A filter-basis \mathscr{D} converges to y if U open, $U \ni y$ implies $\exists D \in \mathscr{D}$ with $D \subseteq U$. Prove that $f : X \to Y$ is continuous if and only if, for every $x \in X$, $f(\mathcal{N}_x)$ converges to $f(x)$.

(iii) Prove that the following are equivalent:

(a) X is Hausdorff,

(b) no filter on X converges to more than one point,

(c) if a filter $\mathscr F$ on X converges to x, then x is the only cluster point of $\mathscr F$.

(iv) Suppose that f is a function from X onto Y, and that $x \in X$. Prove that f is continuous at x if and only if, for every ultrafilter $\mathcal U$ on X which converges to x, the ultrafilter $f(\mathscr{U})$ converges to $f(x)$.

4. Suppose M, N, X, Y are topological spaces, $\pi_X : X \times Y \to X$ is the usual projection.

(i) Prove that $f: M \to N$ is closed (ie. $f(C)$ is closed in N, for each C closed in M) if and only if, for each $n \in N$ and each open $U \supseteq f^{-1}(n)$, there is an open $V \ni n$ such that $f^{-1}(V) \subseteq U$.

(ii) If Y is compact, prove that π_X is closed.

(iii) If Y is compact Hausdorff, prove that $q: X \to Y$ is continuous if and only if its graph is closed in $X \times Y$.

5. (i) For $f, g \in \prod_{n\in\mathbb{N}}[0,1]$, define $D(f,g) = \sum_{n=0}^{\infty} 2^{-n}|f(n) - g(n)|$. Show that the Tychonoff topology on the product $\prod_{n\in\mathbb{N}}[0,1]$, and the topology generated by the metric D, are the same.

(ii) If $\{X_\lambda : \lambda \in \Lambda\}$ is a family of non-empty topological spaces. Show that $\prod_{\lambda \in \Lambda} X_\lambda$ is Hausdorff in the Tychonoff topology if and only if each X_{λ} is Hausdorff.

 $\prod_{\lambda \in \Lambda} X_{\lambda}$ is given the Tychonoff topology. Fix a point $f \in \prod_{\lambda \in \Lambda} X_{\lambda}$ and, for any fixed (iii) Suppose that $\{X_\lambda : \lambda \in \Lambda\}$ is a family of non-empty topological spaces and that $\mu \in \Lambda$, let Y_{μ} be that subset defined by

$$
Y_{\mu} = \{ g : g(\lambda) = f(\lambda) \text{ whenever } \lambda \neq \mu \}.
$$

Prove that the restriction of the projection mapping π_{μ} to Y_{μ} is a homeomorphism from Y_μ to X_μ .

(iv) Suppose that for each $\lambda \in \Lambda$, X_{λ} is non-empty and connected. For any given $f \in \prod_{\lambda \in \Lambda} X_{\lambda}$, show that

$$
D = \{ g : g(\lambda) = f(\lambda) \text{ for all but finitely many } \lambda \}
$$

is connected. Show that $\prod_{\lambda \in \Lambda} X_{\lambda}$ is connected, in the Tychonoff topology.

6. Find the generalization of Tychonoff's Theorem to locally compact spaces, and prove it.

7. (i) Suppose that $\{X_\lambda : \lambda \in \Lambda\}$ is a family of non-empty topological spaces. We define the *box topology* on the cartesian product $\prod_{\lambda \in \Lambda} X_{\lambda}$ to be the topology with basis consisting of all products $\prod_{\lambda \in \Lambda} T_{\lambda}$, where each T_{λ} is open in X_{λ} .

Show that, in the box topology, a product of infinitely many Hausdorff spaces, each of which has at least two points, is not compact.

[Hint: consider the case where each X_λ has exactly two points. What is the box topology like then?]

 $\prod_{n\in\mathbb{N}}X_n$, let (ii) (Optional) For each natural number n, let $X_n = [0, 1]$. In the cartesian product

$$
U = \left\{ g : (\exists r > 0)(\forall n) \left(g(n) < \frac{r}{n} \right) \right\}.
$$

Show that, in the box topology, U is clopen (ie. closed and open). Deduce that a box product of connected spaces need not be connected.