C8.6 Limit Theorems and Large Deviations in Probability

Sheet 2 HT 2020

1. Let (S, d) be a complete metric space, and $x \in \mathbb{C}(S)$ the space of all continuous paths in S. Let $\lambda > 0$ and T > 0. Define $\tau_0 = 0$, and τ_n inductively by

$$\tau_n = \inf\left\{t \ge \tau_{n-1} : d(x(t), x(\tau_{n-1})) \ge \frac{\lambda}{4}\right\}$$

for n = 1, 2, ..., where the convention that $\inf \emptyset = \infty$ is applied. The entropy number is defined to be

$$N(x,\lambda,T) = \min\left\{n : \tau_{n+1} > T\right\}$$

and the minimal gap

$$\delta(x,\lambda,T) = \min\left\{\tau_n - \tau_{n-1} : 1 \le n \le N(x,\lambda,T)\right\}.$$

Show that for every $0 < \delta \leq \delta(x, \lambda, T)$ we have

$$\omega(x,\delta,T) \le \lambda.$$

2. Let T > 0 and $x : [0,T] \to \mathbb{R}^d$ be a continuous path in \mathbb{R}^d . For $0 \le s < t \le T$ we use $x_{s,t}$ to denote the increment x(t) - x(s). For each $m = 1, 2, \dots, t_j^m = \frac{j}{2^m}T$ are called dyadic points of degree m, where $j = 0, 1, \dots, 2^m$. The collection of all these dyadic points of degree m is denoted by D_m , and $D = \bigcup_{m=1}^{\infty} D_m$. Then D is countable and dense in [0,T].

(i) Let $0 \leq s < t \leq T$. There is a sequence of dyadic points $s_i \in D$, such that for each *i*, there is $m \in \mathbb{N}$ and some $j = 0, \dots, 2^m$ (so *m* and *j* depend on *i*) such that if $s_i \neq s_{i+1}$ then $s_i = t_j^m$, $s_{i+1} = t_{i+1}^m$ and

$$[s,t) = \bigcup_{i=-\infty}^{\infty} [s_i, s_{i+1})$$

is an disjoint union, where for each *m* there are at most two different i_1 and i_2 appearing in the previous union such that $s_{i_1}, s_{i_{1+1}}, s_{i_2}, s_{i_{2+1}}$ belong to the same D_m . Moreover $s_i \uparrow t$ as $i \to \infty$ and $s_i \downarrow s$ as $i = -\infty$. Therefore $x_{s,t} = \sum_{i=-\infty}^{\infty} x_{s_i,s_{i+1}}$.

[*Hint.* The idea is to select at each step a dyadic interval $[t_j^m, t_{j+1}^m]$ lying inside [s, t] with the maximum length (i.e. the least m). For example, as the first step, choose the least m_0 and some j_{m_0} , such that $[t_{jm_0}^{m_0}, t_{jm_0+1}^{m_0}] \subset [s, t]$ and

$$t_{jm_0}^{m_0} - s < \frac{1}{2^{m_0}}T, \quad t - t_{jm_0+1}^{m_0} < \frac{1}{2^{m_0}}T.$$

Therefore, if $|t-s| = \delta$, then $\frac{1}{2^{m_0}}T \simeq \delta$, that is $m_0 = \left[\log_2 \frac{T}{\delta}\right]$.

(ii) Let p > 1 and $\gamma > p - 1$. There is a constant C depending only on p and γ such that

$$\sup_{P} \sum_{l} \left| x_{t_{l}, t_{l+1}} \right|^{p} \le C \sum_{m=1}^{\infty} m^{\gamma} \sum_{j=0}^{2^{m}-1} \left| x_{t_{j}^{m}, t_{j+1}^{m}} \right|^{p}$$

where \sup_P runs over all possible finite partitions $0 = t_0 < \cdots < t_k = T$. [Hint. Use the notations in (i) to $[s,t] = [t_l, t_{l+1}]$].

(iii) For $m = 1, 2, \dots$, let $\Delta_m = \{(s, t) : s, t \in D_m \text{ with } |t - s| = 2^{-m}T\}$, and $K_m = \sup_{(s,t) \in \Delta_m} |x_t - x_s|$. Then

$$K_m \leq \sup_i |x_{t_j^m, t_{j+1}^m}|.$$

(iv) Let $\alpha > 0$ and consider $z_{s,t} = |x_{s,t}|/(t-s)^{\alpha}$ where $0 \le s < t \le T$. Show that

$$\sup_{s \neq t} \frac{|x_{s,t}|}{|t-s|^{\alpha}} \le 2^{(\alpha+1)} \sum_{m=0}^{\infty} 2^{m\alpha} K_m \le 2^{(\alpha+1)} \sum_{m=0}^{\infty} 2^{m\alpha} \max_{j=0,\cdots,2^m-1} |x_{t_j^m,t_{j+1}^m}| \le 2^{\alpha+1} \sum_{m=0}^{\infty} 2^{m\alpha} K_m \le 2^{\alpha+1} \sum_{m=0}^{\infty} 2^{m\alpha} \sum_{j=0,\cdots,2^m-1}^{\infty} |x_{t_j^m,t_{j+1}^m}| \le 2^{\alpha+1} \sum_{m=0}^{\infty} 2^{m\alpha} K_m \le 2^{\alpha+1} \sum_{m=0}^{\infty} 2^{m\alpha} \sum_{j=0,\cdots,2^m-1}^{\infty} |x_{t_j^m,t_{j+1}^m}| \le 2^{\alpha+1} \sum_{j=0}^{\infty} 2^{m\alpha} \sum_{j=0,\cdots,2^m-1}^{\infty} |x_{t_j^m,t_{j+1}^m}| \le 2^{\alpha+1} \sum_{j=0}^{\infty} 2^{\alpha+1}$$

[*Hint.* Using (i) $x_{s,t} = \sum_{i=-\infty}^{\infty} x_{s_i,s_{i+1}}$, and the fact that if $|t-s| \leq 2^{-m}T$ then $s_i \in \bigcup_{n>m} D_n$.] (v) By using (ii) to show that if $B = (B_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R}^d , then

$$\mathbb{E}\left[\sup_{P}\sum_{l}\left|B_{t_{l+1}}-B_{t_{l}}\right|^{p}\right]<\infty\quad\text{for any }p>2.$$

3. Let (X_t) be a continuous stochastic process with values in \mathbb{R}^d on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let T > 0. Suppose there are p > 0, $\varepsilon > 0$ and a constant C > 0 such that

$$\mathbb{E}\left[|X_t - X_s|^p\right] \le C|t - s|^{1+\varepsilon} \quad \text{for all } 0 \le s, t \le T.$$

Show that, if $\alpha < \frac{\varepsilon}{p}$ then

$$\mathbb{E}\left[\left|\sup_{s,t\leq T,s\neq t}\frac{|X_t-X_s|}{|t-s|^{\alpha}}\right|^p\right]<\infty.$$

Hence prove that Brownian motion is α -Hölder continuous for $\alpha < 1/2$. [Hint. Q2 (iii) may be helpful.]

4. (Kolmogorov's criterion for compactness) Let $(X^{(n)})$ be a sequence of \mathbb{R}^d -valued continuous stochastic processes, such that

(i) the family of initial distributions of $X_0^{(n)}$ is tight, and (ii) there are constants p > 0, $\varepsilon > 0$ and C > 0 such that

$$\mathbb{E}\left[\left|X_t^{(n)} - X_s^{(n)}\right|^p\right] \le C|t - s||^{1+\varepsilon}$$

for all $s, t \geq 0$ and for $n = 1, 2, \cdots$.

Then the laws of $(X^{(n)})$ are relatively compact.

5. Let (S, d) be a metric space. For each $n = 1, 2, ..., 0 = t_0^{(n)} < t_1^{(n)} < \cdots < t_j^{(n)} < \cdots$, where $t_j^{(n)} \uparrow \infty$ as $j \to \infty$, such that $t_j = \lim_{n \to \infty} t_j^{(n)}$, $t_j < t_{j+1}$ and $t_k \uparrow \infty$. Let $w^{(n)}(t) = a_{n,j}$ for $t \in [t_j^{(n)}, t_{j+1}^{(n)})$ for each j, so that $w^{(n)} \in \mathbb{D}(S)$ and each $w^{(n)}$ is a step function (with countable many jumps). Suppose $a_j = \lim_{n \to \infty} a_{n,j}$ exists for each $j = 0, 1, \dots$ Define $w(t) = a_j$ if $t \in [t_j, t_{j+1})$ for some j. Show that $w \in \mathbb{D}(S)$ and $D(w^{(n)}, w) \to \infty$ as $n \to \infty$.

[*Hint*. Let T > 0 and choose k such that $t_k \leq T < t_{k+1}$. Let

$$\sigma^{(n)}(t) = \begin{cases} t_j + \frac{t_{j+1} - t_j}{t_{j+1}^{(n)} - t_j^{(n)}} (t - t_j^{(n)}), & \text{if } j \le k - 1, t \in [t_j^{(n)}, t_{j+1}^{(n)}), \\ t_{k+1} + (t - t_k^{(n)}), & \text{if } t \ge t_k^{(n)}. \end{cases}$$

Show that $\sigma^{(n)} \in \Lambda$ for each n and show that for n large enough it holds that

$$\sup_{t \le T} |\sigma^{(n)}(t) - t| \le \max_{1 \le j \le k} |t_j^{(n)} - t_j|$$

and

$$\sup_{t \le T} d(w^{(n)}(t), w(\sigma^{(n)}(t))) \le \max_{1 \le j \le k} d(a_{n,j}, a_j).]$$