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1. (i) Let δ > 0 and s ∈ E, and X,Y two E-valued random variables on
(Ω,F , P ). Show that

P [X ∈ Bs(2δ)] + P [ρ(X, Y ) > δ] ≥ P [Y ∈ Bs(δ)] ,

where Bs(δ) denotes the open ball centered at s with radius δ. [Hint. If a ∈ Bs(δ)
and b /∈ Bs(2δ), then ρ(a, b) > δ.]

(ii) Let c > 0 such that

lim inf
ε↓0

ε logP [ρ(Xε, Y ε) > δ] ≤ −c

where Xε and Y ε are E-valued random variables for every ε ∈ (0, 1). Show that

lim inf
ε↓0

ε logP [Xε ∈ Bs(2δ)] ∨ (−c) ≥ lim inf
ε↓0

ε logP [Y ε ∈ Bs(δ)] .

In parts (iii) and (iv), suppose {Xε
n : ε ∈ (0, 1)} is a family of random variables

in a Polish space (E, ρ) on a probability space (Ω,F , P ), satisfying LDP with a good
rate function In, where n = 1, 2, · · · . Suppose Xε

n → Xε as n → ∞ exponentially,
i.e.

lim
n→∞

lim sup
ε↓0

ε logP [ρ(Xε
n, X

ε) > δ] = −∞ (1)

for every δ > 0.
(iii) Show that

lim inf
ε↓0

ε logP [Xε ∈ Bs(2δ)] ≥ − lim sup
n→∞

inf
Bs(δ)

In(s)

for every s ∈ E and δ > 0.
(iv) Let S ⊂ E be a closed subset, and Sδ = {s ∈ E : ρ(s, S) < δ} for δ > 0.

Show that
lim sup

ε↓0
ε logP [Xε ∈ S] ≤ − lim

δ↓0
lim inf
n→∞

inf
Sδ

In. (2)

2. Let E,E ′ be two Polish spaces, fn : E → E ′ be a sequence of continuous
mappings, and I : E → [0,∞] be a good rate function. Suppose fn converges to f
uniformly on Ic = {x : I(x) ≤ c} for every c ≥ 0. Define

I ′(s′) = {I(s) : s ∈ H such that f(s) = s′}

where H = {s ∈ E : I(s) < ∞}, and I ′(s′) = ∞ if s′ ∈ E ′ \ H. Show that I ′ is a
good rate function on E ′, that is, I ′c = {s′ : I ′(s′) ≤ c} is compact for every c ≥ 0.

3. Let B = (B(t))t≥0 be a standard Brownian motion on (Ω,F , P ), and Bε =√
εB for ε ∈ (0, 1). Suppose fn be the mapping which sends a path w with time

duration [0, 1] to its dyadic approximation

fn(w)(t) = w(tk−1
n ) + 2n(t− tk−1

n )(w(tkn)− w(tk−1
n ))
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for t ∈
[

tk−1
n , tkn

]

, where tkn = k
2n
, k = 0, · · · , 2n, and n = 1, 2, · · · .

(i) For every T > 0 and λ > 0 we have

P

{

sup
s≤T

B(s) ≥ λT

}

≤ exp

(

−λ2

2
T

)

.

[Hint. You may use the fact that the running maximum MT = sups≤T B(s) has
a distribution with PDF

2√
2πT

e−x2/2T ,

or consider the family of exponential martingales exp
[

αB(t)− α2

2
t
]

where α ∈ R.]

(ii) Then

P

[

sup
t≤1

|Bε(t)− fn(B
ε)(t)| ≥ δ

]

≤ 2n exp

{

−2nδ2

8ε

}

(3)

for every ε ∈ (0, 1) and δ > 0. Hence deduce that fn(B
ε) → Bε exponentially as

n → ∞ as C([0, 1])-valued random variables.

4. (Wentzell-Freidlin’s theory) In this exercise we take the opportunity to de-
velop a small part of Wentzell-Freidlin’s small perturbation theory of dynamical
systems. Let us concentrate on the one-dimensional case. Let E = C0([0, 1],R) be
the continuous path space in R starting at 0 with time duration [0, 1], equipped
with the uniform norm. The mapping f : w → f(w) where X = f(w) is defined by
solving the integral equation:

Xt = w(t) +

∫ t

0

b(Xs)ds

where b : R → R is Lipschitz continuous.
(i) Show that X : E → E is well defined and is continuous.
(ii) Let P ε (for every ε ∈ (0, 1)) be the law of the solution (Xε

t )t∈[0,1] to the
stochastic integral equation

Xε
t =

√
εw(t) +

∫ t

0

b(Xε
s )ds.

Show that (P ε) satisfies a large deviation principle with some rate function Ib which
you should specify.
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