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1. (i) Let 6 > 0 and s € E, and X,Y two E-valued random variables on
(2, F, P). Show that

P[X € B,(20)] + P[p(X.Y) > 8] > P[Y € B,(9)].

where B(9) denotes the open ball centered at s with radius §. [Hint. If a € By()
and b ¢ B,(209), then p(a,b) > 9.]
(ii) Let ¢ > 0 such that

limig)nfelogp [P(X5,Y?) > 0] < —c

where X¢ and Y are E-valued random variables for every ¢ € (0,1). Show that

limiénfelogp [X€ € Bs(20)] V (—¢) > lilriﬁnfglogP Y€ € Bys(9)].

In parts (iii) and (iv), suppose {X: : ¢ € (0,1)} is a family of random variables
in a Polish space (F, p) on a probability space ({2, F, P), satisfying LDP with a good
rate function /,,, where n = 1,2,---. Suppose X, — X® as n — oo exponentially,
ie.

lim limsupelog P [p(X,, X®) > §] = —oc0 (1)
n—o0 €l0
for every ¢ > 0.
(iii) Show that

liminfelog P | X® € Bs(20)] > —1i inf I,
im nf e log P | (20)] = —lim sup Jnf (s)
for every s € E and 6 > 0.
(iv) Let S C E be a closed subset, and S° = {s € E : p(s,S) < 6} for § > 0.
Show that

limsupelog P [X° € S] < —lim liminfinf 7,,. (2)
cl0 0 n—oo g5

2. Let E,E’ be two Polish spaces, f, : E — E’ be a sequence of continuous
mappings, and [ : £ — [0, 00| be a good rate function. Suppose f,, converges to f
uniformly on I, = {x : I(x) < ¢} for every ¢ > 0. Define

I'(s") ={I(s) : s € H such that f(s) = s’}

where H = {s € E: I(s) < oo}, and [I'(s') = o0 if ' € E'\ H. Show that I’ is a
good rate function on E', that is, Il = {s' : I'(s') < ¢} is compact for every ¢ > 0.

3. Let B = (B(t))i>0 be a standard Brownian motion on ({2, F, P), and B® =
VEeB for € € (0,1). Suppose f, be the mapping which sends a path w with time
duration [0, 1] to its dyadic approximation

Fa(w)(t) = w(ty™") +2"(t — ™) (w(ty) — w(t;™))
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for t € [th=1,¢*], where tf = £ k=0,---,2", andn=1,2,- -
(i) For every T'> 0 and A > 0 we have

ooy ) <o (7).

s<T

[Hint. You may use the fact that the running maximum M7 = sup . B(s) has
a distribution with PDF

2 e—x2/2T
VonT ’
or consider the family of exponential martingales exp [aB (t) — %t] where o € R.]
(ii) Then
15 13 n 2”52
P |sup [B*(t) — fu(B7)(t)| =2 6| < 2"exp § - (3)
t<1 8¢

for every ¢ € (0,1) and 6 > 0. Hence deduce that f,(B°) — B° exponentially as
n — oo as C([0, 1])-valued random variables.

4. (Wentzell-Freidlin’s theory) In this exercise we take the opportunity to de-
velop a small part of Wentzell-Freidlin’s small perturbation theory of dynamical
systems. Let us concentrate on the one-dimensional case. Let E = Cy([0, 1],R) be
the continuous path space in R starting at 0 with time duration [0, 1], equipped
with the uniform norm. The mapping f : w — f(w) where X = f(w) is defined by
solving the integral equation:

X =w(t)+ /t b(X)ds

where b : R — R is Lipschitz continuous.

(i) Show that X : E — E is well defined and is continuous.

(ii) Let P (for every ¢ € (0,1)) be the law of the solution (X7 ):cjo,1) to the
stochastic integral equation

XE = Euw(t) + /0 b(X7)ds.

Show that (P¢) satisfies a large deviation principle with some rate function I° which
you should specify.



