C8.6 Limit Theorems and Large Deviations in Probability

Sheet 4 HT 2020

1. (i) Let $\delta > 0$ and $s \in E$, and X,Y two *E*-valued random variables on (Ω, \mathcal{F}, P) . Show that

$$P[X \in B_s(2\delta)] + P[\rho(X, Y) > \delta] \ge P[Y \in B_s(\delta)],$$

where $B_s(\delta)$ denotes the open ball centered at s with radius δ . [*Hint*. If $a \in B_s(\delta)$ and $b \notin B_s(2\delta)$, then $\rho(a, b) > \delta$.]

(ii) Let c > 0 such that

$$\liminf_{\varepsilon \downarrow 0} \varepsilon \log P\left[\rho(X^{\varepsilon}, Y^{\varepsilon}) > \delta\right] \le -c$$

where X^{ε} and Y^{ε} are *E*-valued random variables for every $\varepsilon \in (0, 1)$. Show that

$$\liminf_{\varepsilon \downarrow 0} \varepsilon \log P \left[X^{\varepsilon} \in B_s(2\delta) \right] \lor (-c) \ge \liminf_{\varepsilon \downarrow 0} \varepsilon \log P \left[Y^{\varepsilon} \in B_s(\delta) \right].$$

In parts (iii) and (iv), suppose $\{X_n^{\varepsilon} : \varepsilon \in (0, 1)\}$ is a family of random variables in a Polish space (E, ρ) on a probability space (Ω, \mathcal{F}, P) , satisfying LDP with a good rate function I_n , where $n = 1, 2, \cdots$. Suppose $X_n^{\varepsilon} \to X^{\varepsilon}$ as $n \to \infty$ exponentially, i.e.

$$\lim_{n \to \infty} \limsup_{\varepsilon \downarrow 0} \varepsilon \log P\left[\rho(X_n^{\varepsilon}, X^{\varepsilon}) > \delta\right] = -\infty \tag{1}$$

for every $\delta > 0$.

(iii) Show that

$$\liminf_{\varepsilon \downarrow 0} \varepsilon \log P \left[X^{\varepsilon} \in B_s(2\delta) \right] \ge -\limsup_{n \to \infty} \inf_{B_s(\delta)} I_n(s)$$

for every $s \in E$ and $\delta > 0$.

(iv) Let $S \subset E$ be a closed subset, and $S^{\delta} = \{s \in E : \rho(s, S) < \delta\}$ for $\delta > 0$. Show that

$$\limsup_{\varepsilon \downarrow 0} \varepsilon \log P \left[X^{\varepsilon} \in S \right] \le - \liminf_{\delta \downarrow 0} \liminf_{n \to \infty} \inf_{\overline{S^{\delta}}} I_n.$$
(2)

2. Let E, E' be two Polish spaces, $f_n : E \to E'$ be a sequence of continuous mappings, and $I : E \to [0, \infty]$ be a good rate function. Suppose f_n converges to f uniformly on $I_c = \{x : I(x) \le c\}$ for every $c \ge 0$. Define

$$I'(s') = \{I(s) : s \in H \text{ such that } f(s) = s'\}$$

where $H = \{s \in E : I(s) < \infty\}$, and $I'(s') = \infty$ if $s' \in E' \setminus H$. Show that I' is a good rate function on E', that is, $I'_c = \{s' : I'(s') \le c\}$ is compact for every $c \ge 0$.

3. Let $B = (B(t))_{t\geq 0}$ be a standard Brownian motion on (Ω, \mathcal{F}, P) , and $B^{\varepsilon} = \sqrt{\varepsilon}B$ for $\varepsilon \in (0, 1)$. Suppose f_n be the mapping which sends a path w with time duration [0, 1] to its dyadic approximation

$$f_n(w)(t) = w(t_n^{k-1}) + 2^n(t - t_n^{k-1})(w(t_n^k) - w(t_n^{k-1}))$$

for $t \in [t_n^{k-1}, t_n^k]$, where $t_n^k = \frac{k}{2^n}$, $k = 0, \dots, 2^n$, and $n = 1, 2, \dots$. (i) For every T > 0 and $\lambda > 0$ we have

$$P\left\{\sup_{s\leq T}B(s)\geq\lambda T\right\}\leq\exp\left(-\frac{\lambda^2}{2}T\right).$$

[*Hint*. You may use the fact that the running maximum $M_T = \sup_{s \leq T} B(s)$ has a distribution with PDF

$$\frac{2}{\sqrt{2\pi T}}e^{-x^2/2T},$$

or consider the family of exponential martingales $\exp\left[\alpha B(t) - \frac{\alpha^2}{2}t\right]$ where $\alpha \in \mathbb{R}$.] (ii) Then

$$P\left[\sup_{t\leq 1} |B^{\varepsilon}(t) - f_n(B^{\varepsilon})(t)| \geq \delta\right] \leq 2^n \exp\left\{-\frac{2^n \delta^2}{8\varepsilon}\right\}$$
(3)

for every $\varepsilon \in (0,1)$ and $\delta > 0$. Hence deduce that $f_n(B^{\varepsilon}) \to B^{\varepsilon}$ exponentially as $n \to \infty$ as C([0,1])-valued random variables.

4. (Wentzell-Freidlin's theory) In this exercise we take the opportunity to develop a small part of Wentzell-Freidlin's small perturbation theory of dynamical systems. Let us concentrate on the one-dimensional case. Let $E = C_0([0, 1], \mathbb{R})$ be the continuous path space in \mathbb{R} starting at 0 with time duration [0, 1], equipped with the uniform norm. The mapping $f: w \to f(w)$ where X = f(w) is defined by solving the integral equation:

$$X_t = w(t) + \int_0^t b(X_s) ds$$

where $b : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous.

(i) Show that $X: E \to E$ is well defined and is continuous.

(ii) Let P^{ε} (for every $\varepsilon \in (0,1)$) be the law of the solution $(X_t^{\varepsilon})_{t \in [0,1]}$ to the stochastic integral equation

$$X_t^{\varepsilon} = \sqrt{\varepsilon}w(t) + \int_0^t b(X_s^{\varepsilon})ds$$

Show that (P^{ε}) satisfies a large deviation principle with some rate function I^{b} which you should specify.