C8.5 Introduction to SLE

Sheet 2

Problem 1.

Scaling property of Loewner Evolution. Let K_t be a growing hull with the standard capacity parametrization and let u(t) be the corresponding driving function. Let $\tilde{K}_s = \lambda K_{s/\lambda^2}$. Show that \tilde{K}_s has the standard capacity parametrization and compute its driving function.

Problem 2.

Loewner Evolution of inverse map. Let g_t be the solution of Loewner Evolution with driving function u_t . Show that the inverse map $f_t(z) = g_t^{-1}(z)$ satisfies the equation

(1)
$$\partial_t f_t(z) = -f'_t(z) \frac{2}{z - u_t}, \qquad z \in \mathbb{H}.$$

Problem 3.

Suppose $0 < \alpha < 1$.

(1) Consider

 $f(z) = (z + \alpha)^{1-\alpha} (z + \alpha - 1)^{\alpha},$

where the branches of powers are chosen so that f is positive for real $z > 1 - \alpha$. Show that $f = f_K$ where K is the interval $[0, \alpha^{\alpha}(1 - \alpha)^{1-\alpha}e^{i\alpha\pi}]$. Show that it maps $z = 1 - 2\alpha$ to the endpoint of K.

(2) Let γ be a straight interval in \mathbb{H} growing from the origin and forming the angle $\pi \alpha$ with the positive real line. Parametrize it by capacity, write the corresponding maps f_t and verify that they satisfy the Loewner Differential equation (1).

Problem 4.

Solve the radial Loewner evolution driven by the family of measures μ_t , there μ_t is the uniform measure on the unit circle, namely $\mu_t(d\theta) = d\theta/2\pi$.

Problem 5.

Let K_t be a growing family of \mathbb{H} -hulls and u(t) be the corresponding driving function. Let $\tilde{u}(t) = -u(t)$ and \tilde{K}_t be the corresponding family of hulls. How \tilde{K}_t is related to K_t ?

Problem 6.

Show that $SLE(\kappa)$ is scale invariant. Namely that if $\gamma(t)$ is an $SLE(\kappa)$ curve, then $\tilde{\gamma}(t) = \lambda \gamma(t/\lambda^2)$ has the same distribution as $\gamma(t)$.