Solutions sheet 4 General Relativity II, Hilary Term 2020

Questions marked with a star have lowest priority to be discussed during class. Any comments or corrections
please to Jan.Sbierski@maths.ox.ac.uk.

1) Let (M,g) be a Lorentzian manifold and let § = Q2g be a Lorentzian metric on M that is conformal to
g, where Q is a smooth function with Q(z) # 0 for all z € M.

(a) Show that the Christoffel symbols T¥,_ of § are given by
f‘{,‘,{ =TI"_ +0clog- 6", + 0, logQ- ", — Oxlog§)- 7" g -
(b) Let v : R O I — M be a null geodesic with respect to g. Show that it is also a null geodesic with

respect to g (but not necessarily affinely parametrised).

(c) * Give a counterexample to the above for timelike/spacelike geodesics, i.e., give an explicit example
of a Lorentzian manifold (M, g) together with a conformal metric g and a timelike/spacelike geodesic

v : I — R with respect to g which, however, is not a timelike/spacelike geodesic with respect to g.

Solution:

(a) Note that §g** = 2z g**. Then

~ 1 B _ B 5
Flljf-c = iglyb)\(gku,n + I \k,v — gun)\)
1
= 3029 (0x(Lgr) + 0,(2gax) — 02(2gu)

1
re. + 3 (8,{ log Q2 - 6", + 9, 1og Q2 - *_ — Dy log Q% - g”’\gy,{) .

(b) Assume that ~ is affinely parametrised and let V' = 4(s). We then have ViV = 0. We now compute
(Vv V)* = VY9,V + T VVVe
= VYO,V 4 TE VIVE 4 (2&; log - VEVE — 9y log Q- g"g(V, V))
=04 20, 1og Q- VEVH — dylog Q- g**g(V, V) .
Thus, if V is null we have ViV ~ V, thus v is also a null geodesic with respect to g, but in general
not affinely parametrised.

(c) A possible counterexample is M = R? with g = —dt? + d2?, and Q = e®. Then ~(s) = (s, o) for
some zo € R is an affinely parametrised timelike geodesic with respect to g, we have 4(s) = 0;. And
we compute with the formula from above

(VyV)* = —9,loge® - (-1) =1,

thus Vy V is not proportional to 0.

Changing the metric to g = dt? — dx?, the same is a counterexample for spacelike geodesics.




2) This question introduces the deSitter spacetime. Consider 4 + 1-dimensional Minkowski spacetime, i.e.,
R® with standard Cartesian coordinates {v,w, z,y, z} and metric m = —dv? + dw? + da? + dy? + dz?. Let
M C R® denote the level set

Pttty =a?,

with a > 0. Check that this is a timelike hypersurface. Can you sketch it (suppressing some dimensions)?

By restricting the Minkowski metric to the tangent spaces of M we obtain a Lorentzian metric g on M. In
fact, the Ricci curvature of the Lorentzian metric g on M satisfies R, = %glw. The Einstein equations

with cosmological constant A read

1
Rab - §Rgab + Agab = 877Tab .

It thus follows that (M, g) is a solution to the Einstein equations with cosmological constant A = % and
Tup = 0. It is called the deSitter spacetime.

We now introduce coordinates on M by (¢, x, 0, @) ~ (U,w, x,, z) with

4
= asinh(—

v = asin (a)
t

w = acosh(—) cos x
a
t

x = accosh(—) sin x cos 8
o
t

y = acosh(—) sin x sin 6 cos ¢
o
t

z = acosh(—)sin x sinfsin p .
o

What is the range of these coordinates? Do they cover all of M? Show that in these coordinates the
metric g is given by

t
g = —dt? + o cosh®(—)(dx? + sin? x[d#? + sin’® 6 dp?]) .
o

Draw the hypersurfaces of constant ¢ in your above sketch. What is their topology, how does their
geometry change with coordinate time ¢?7

1
a cosh( é) :
Write the metric in the coordinates (A, x, 8, ¢) and show that the deSitter spacetime is conformal to part

We now construct the Penrose diagram. Choose a new time-coordinate A(t) which satisfies % =

of the Einstein static universe. Which boundary surfaces would you call past/future null infinity? Draw
the Penrose diagram. Explain why an observer, even if she observes for an infinite time, cannot observe

the entire spacetime. How does this compare to the situation in Minkowski spacetime?

Solution: Tt is a hypersurface since the differential of the level set function is 2(—vdv+wdw + zdz +ydy +
zdz), which is non-vanishing on M. It is a timelike hypersurface, since the m-norm of the differential of
the level set function equals 40 > 0 on M, thus the normal is spacelike and the hypersurface is timelike.



The range of the coordinates ist € R, 0 < x < 7, 0 < 0 < 7, 0 < ¢ < 2m. They cover the whole
space apart from the usual points on the S? in the spherical coordinates (¥, #, ). To compute the metric

g = (*m in these coordinates we compute

dz =d(« cosh(é) sin x sin6) sin p + « cosh(é) sin x sin 6 cos pdp
dy = d(« cosh(é) sin x sin 6) cos p — « cosh(é) sin x sin 6 sin pdp
— d2 +dy? = [d(a cosh(é) sin x sin 0)]2 + (« cosh(é) sin x sin 9)2 do? .
t. . [N .
dx = d(a cosh(a) sin x) cos — « cosh(a) sin x sin 6 d6
d(a cosh i sin x sin #) = d(« cosh i sin x) sin @ + « cosh i sin x cos 0df
a e! «

t t t
= da® + dy® + dz* = [d(« cosh(a) sin )] ’ 4 [ cosh(a) sin x| 2 d6? + [ cosh(a) sin y sin ] 2dgo2 .
t t, .
dw = d(« cosh(a) cosy — cosh(a) sin y dx
t t t
d(a cosh(a) sinx) = d(« cosh(a) sin x + « cosh(a) cos xdx

— dw’® +da® + dy® + dz* = [d(a cosh(=))]” + a? cosh2(§) (dx? + sin® x [d6? + sin® 0 dp?]) .

Q|

dv = cosh(—)dt

t
o
d(acosh(L) = sinh(L)at
a’ !
t
— —dv® +dw? +da? + dy? +d2? = —dt* + o cosh2(a) (dx® 4 sin® x [d6? + sin® 0 de?]) .

The surfaces of constant ¢ are round 3-spheres of radius o cosh(£). They have minimum radius at time
t = 0 and expand infinitely for ¢ — +o0.



Integrating % = we obtain

1
acosh(L)

A= 2arctan(exp(§)) +ec.

We choose ¢ = — 3, so that A € (=%, Z). The metric becomes

_

t
g =a?cosh’(—) [ — d\? + dx? + sin® x(df? + sin® 0 d?)] .
«
Einstein static universe

Recall that the Einstein static universe is R xS? with coordinates {), x, 6, ¢} together with the underbraced
metric. Thus, deSitter is conformal to the part (=%, %) x S* of the Einstein static universe. We can attach
the past and the future boundary — here, there is no differentiation between timelike and null infinities.

Spacelike infinity is not present.

It is clear from the Penrose diagram that given an observer 7 there are always events which she will never
be able to see. This is different to Minkowski spacetime (which is immediate from its Penrose diagram)

— at least if the observer does not accelerate infinitely so that she asymptotes to future null infinity.

3) Let (M, g) be a Lorentzian manifold and let ¥ C M be a Killing horizon of a Killing vector field 7. Show
that the surface gravity s, given by V7 T|s = £T|x, satisfies

K2 = —% [(VTy)(VoT)] I -

Hint: Use that T is hypersurface orthogonal on 3.

Solution:

We use that T is hypersurface orthogonal on ¥, i.e., on ¥ we have
0="T.VyTy

1
= (TaVch — TN Ty + ToVuTy — TV Ty + TyV T, — TbVaTC>

1
= (2TaVch LTV, T, + 2TchTa) ,



where we have used Killing’s equation V,T;, = —V;,T,. Thus we have
0=T,VyT.+T. NV, Ty + T,V T, .

We now contract this with V°T¢ and we use that 9,(T,T?) = —2xT, (derived in lectures) which implies
V.1, - T° = —kT,, to obtain
0 =T.(VpTe)(VOT) + T.(V'T)(VaTy) + (VoT)* (Vo)
= T, (Vo T.)(VPT®) — KTV T}y + T°V T,
= To(VyTo)(VPTC) + 12T, + &*T,,

which yields the result.

This problem guides you through the derivation of the laws of geometric optics in curved spacetime. Let
(M, g) be a Lorentzian manifold and F € Q?(M) a smooth two-form, the Faraday tensor. The source-free
Maxwell equations read

dF =0 and VHF, =0. (1)

Since dF = 0, one can locally' find a potential A € Q!(M) such that dA = F.
(a) Show that F' satisfies (1) iff A satisfies
V¢V, A, -V, VFA, — R, A" =0. (2)

(b) Recall the gauge freedom flu = A, + 0,x. Show that any solution A, can be put into the Lorentz
gauge V“/LL = 0 by solving an inhomogeneous wave equation for x (note that O,y := V#V,x is the

wave operator in curved spacetimes).

(¢c) We now construct approximate solutions of (2) in the Lorentz gauge, i.e., of
VIV, A, — R, A" =0 and VFA,=0. (3)
We make the geometric optics ansatz
AZPPIOX — %al,e“‘(b , (4)

where a, € Q' (M), ¢ € C®°(M), and A > 0 is a large parameter. Compute VAV, A3PProx
R, ATPPYOX and VFATPPTO group the terms according to their power in A, and show that the

equations (3) are satisfied by (4) up to order O(3) iff a,, and ¢ satisfy
1
Vi, =0,  VH6-V,6=0, V'¢-Va,+ 30,6 a0, =0. (5)

Also infer that if the large parameter X is large compared to covariant derivatives of a, and the

spacetime curvature R
3)-

(d) The vector k := (d¢)* is called the wave vector. Can you justify this terminology?

s then (4) with a, and ¢ satisfying (5) is a good approximate solution of

Consider an observer following a timelike curve v parametrised by proper time who carries with him-
self an orthonormal basis {Ey = 4, F1,..., E,} of the tangent space which forms his local reference
frame. Show that he would interpret the quantity fi)\ -Epdl, = f%)\ -g(Eo, k)|p as the frequency

of the electromagnetic wave (4) at a point p on his worldline.

1Or in fact in any simply connected domain — so for example in particular in all of the Schwarzschild spacetime.



(e) The equation V*¢-V ¢ = 0 is known as the Eikonal equation. It can be always solved locally. Show
that it implies that the wave vector k is null and that it satisfies Vi k = 0, i.e., it is propagated
affinely along null geodesics.

(f) Let us now decompose the covector amplitude a, in (4) as a, = «- f,, with the amplitude o € C*°(M)
and the polarisation covector f, € Q(M). It follows from the first equation in (5) that f,k* = 0,
i.e., the polarisation vector is orthogonal to the wave vector, i.e., it must be tangent to the null
hypersurfaces ¢ = const. Show that to leading order in A the electric and magnetic fields do not
change by adding a multiple of &k, to f,.

Thus, only if f is spacelike do we have a non-vanishing electromagnetic field. Without loss of
generality we can thus normalise the polarisation covector by f, f¥ = 1. Show that the third equation

in (5) implies the propagation equation
1
Via+ iv%“ ca=0 (6)

for the amplitude along the integral curves of k£ and that the polarisation covector is parallely prop-
agated along k, i.e.,
Vif=0.

Note that (6) in particular implies that if & vanishes on some point on an integral curve of k (which
are null geodesics by Vik = 0), then it vanishes along the whole curve. This makes precise in which

sense and under what conditions ‘light propagates along null geodesics in general relativity’.

(g) Consider now the Schwarzschild spacetime with an observer v, following a timelike curve of constant
r=r1a > 2M, 0 = 6y, ¢ = @y and another observer yg following a timelike curve of constant
r=rg >ra, 0 =0y ¢ = ¢y. Make precise, using the laws of geometric optics derived in this

exercise, that a high-frequency light signal of frequency f4 as measured by observer A, sent from A
— oM
to B, arrives red-shifted at observer B with a frequency fp =/ —=#r fa.
B

Solution:
(a) Using F,, =dA,, =V,A, -V, A, and V,V, A" -V, ,V, A" = R"
from the second of Maxwell’s equations.

(b) VA, = VFA, + V*V,x . Thus V*#A, = 0 follows from solving O,y = —V*#A,. Comments: 1)
Note that this does not require A to be a solution. 2) The wave equation can be solved on a large

ovp A7 this follows immediately

class of Lorentzian manifolds, namely globally hyperbolic ones.
(¢c) We compute
. 1 .

VIARPPI = iV - aye™ + LV ay e

and
approx approx - A 1 A approx
VI AP — R, A = V(9,6 a,e ™ + TV, -e ) — R, AP
. . 1 .
= CAVEGV,0 - 4,6 4 (29 9V 0, + 0,6 - a,)e + 5 (VY 0, — BE,a” )¢

The rest follows directly from this.
Comment: Note that while W—/\a‘

solution is strictly larger than the error term. In other words, one assumes that the amplitude varies

is assumed small, this does not imply that % is small, i.e., the

slowly compared to the frequency.



(d)

Start by observing that FiPP™* =i(0,¢ - a, — 0,¢ - a,)erd + (’)(@).
The surfaces of constant ¢ are the surfaces of constant phase, i.e., of the wave fronts. In particular
they give the crests and troughs of the wave. Thus d¢ deserves the name of wave vector.

Introduce a local coordinate system centred at p with Ey = 0; and E; = 0;. Then ¢(t,z) =
#(0) + 0,0(0)t + >, 0;6(0)x; + ... Thus we have near p that e*? s 90 . iA(B:9(0)t+22; 0:9(0)zi),
This shows that the observer would interpret the quantity —AEzoiflp as the frequency at the point p.

The fact that the wave vector is null is immediate. Furthermore covariant differentiation of the

Eikonal equation and using that the Hessian of a function is symmetric, we obtain
0=V, (k k") =2(Vu k)E" =2(V,V,0)k" =2(V,V,0)k" =2k"V k, .

Consider A%PPro* = Lok, e'*?. Then

1 : 1 ) ) 1 X 1 ) )
FopProx = XV/LOL ke Xavuky CeAe 4 iakukuemd’ — Xvuoz . k“e’)‘(z’ — Xavukﬂel)‘d’ — iozkl,k:ue”“ls
1
—0(=
)

We compute from the third equation in (5) that
1 1
0= KVu(af) + 3 (V*hu)af, = (Vea)fy + 5 (V*kuaf, +a(Vif),

Contracting with f” and noticing that (Vi f),f” = %ng(f, f) = 0 because of normalisation, we
obtain first Vo + %V“kua = 0 and then also Vi f = 0.

g=—(1-2) a2 + 1_#2ﬂalr2 + r2do?. Use outgoing EF coordinates u =t — r*, then

2M
g:—(1—T)du2—du®dr—dr®du+r2d02.

The inverse metric is

0 -1 0 0
P -1 1-21 9 0
0 0 L 0
00 0

The curves r — (ug, 1,6, po) are affinely parametrised outgoing null geodesics. This follows easily
from checking that I'},. = 0, using the above expressions of the metric and its inverse in outgoing EF

coordinates.

The observer at r = r4 has normalised velocity EéA) = \/fwat and the observer at r = rg has
Tra

normalised velocity E(()B) = L__9,. Using that 9, = 9, we compute —g(E(()A), o) = L and

1—2M 1—2M
B TA
— g(E(()B), o) = - L —. Thus, the light signal emitted by observer A with frequency fa corresponds
B

to a wave vector 2w fa-4/1 — %Br and thus to the affinely parametrised null geodesics r — (ug, 27 f4-

\/@ -1,00,¢0). It thus follows that

1— 2M
fo=\|Tzzr /s
rE




5) Let M = R x (r4,00) x S? with the standard {t, 7,6, o} coordinates where r, = M + /M2 — a2, M > 0,
and 0 < a < M. We define the Kerr metric g on M by

oM 2Mrasin® 0 2
g=—(1- pQT)dtQ—%(dt®dg@+d<p®dt)+%dr2
7
2Mra? sin® 0 @

+ p% do? + <r2+a2—|— )sin29d4p2 ,

2
where p? = 72 + a?cos?6 and A = 7?2 — 2Mr + a®. Consider a stationary observer A with velocity
u(0 + Q0,) at some value of 79 € (ry,00) and some value of 6y € (0, 7), where u > 0 is chosen such that
the velocity is normalised. Show that ) corresponds to the angular frequency of A as seen by an observer

B with velocity 0; at infinity who is at rest with respect to the asymptotic Lorentz frame.
Thus, an observer with 2 = 0 appears static from infinity ‘with respect to the fixed stars’.

(Hint: The movement of A as seen by B depends on the null geodesics connecting A’s worldline with B’s.
Use the symmetries of the Kerr spacetime to answer this question without actually computing the null
geodesics.)

Solution: Let A’s worldline be t — (¢, 7¢, 6y, o + Qt) (suitably parametrised so that it is unit speed, but
this is not relevant here) and let B’s worldline be t — (¢,71,601,¢1) with r; > 1. Consider time tp, for
observer B and consider all the past directed null geodesics emanating from (tg,,r1,601,¢1). There will
be at least one point of intersection with A’s worldline. Thus, light emitted from this point by A, let us
call it (ta,, 70,00, 0+ Qt4,), is seen by observer B at time tp,. The exact configuration is not important.
Then, when time increases for B, the direction from which this light ray is arriving from A’s worldline
is changing, since the mutual configuration is changing. Exactly how the direction is changing is quite a
complicated thing to compute, but again it is not needed here. However, when observer A has moved for
coordinate time At = %"7 he is at point (t4, + %”, 70,60, 00 + QL 4, ). Since 9; is a KVF, the geometry
is invariant if one translates everything by ¢t — t 4 %’T Thus the light emitted by observer A from point
(ta, + %’T, 0,00, 0o + Qt 4, ) arrives at observer B at time tp, + %” exactly from the same direction as it
did at time tp,. Thus B will observe A rotating with a period of %’T Also note that t is proper time for
an observer at infinity.

6) * Show that the Kerr metric (7) from the last problem reduces to

(a) the Schwarzschild metric for a = 0

(b) the Minkowski metric in spheroidal coordinates for M = 0, but a # 0. Here, the spheroidal coor-

dinates in Minkowski spacetime are given by z = (r2 + a2)2 sinfcos¢p, y = (r? + a2)2 sin 0 sin ¢,

z = rcosf. Note that the surfaces r = const are spheroids :fZIZQ + j—z =1.

Solution: This is direct computation.



