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Abstract

We provide a simple derivation of the Schwarzschild solution in General Relativity, generalizing

an early approach by Weyl, to include Birkhoff’s theorem: constancy of the mass; its deeper,

Hamiltonian, basis is also given. Our procedure is illustrated by a parallel derivation of the Coulomb

field and constancy of electric charge, in electrodynamics.

1

http://arXiv.org/abs/gr-qc/0408067v2


I. INTRODUCTION

Deriving and understanding some of the basic properties of the fundamental –

Schwarzschild – geometry is a significant hurdle in elementary expositions of General Rela-

tivity (GR). Indeed, no less distinguished an investigator than Hermann Weyl proudly dis-

covered an enticing shortcut1, totally unjustified at the time, but legitimized much later2,3.

More recently, it has been used for more complicated gravity models as well4. Weyl’s result

is, however, incomplete: He got the famous
(

1 − 2m
r

)

factor but assumed a priori, rather

than derived, the constancy of m. The latter is almost as important a property as the factor

itself, and of course, a consequence of Einstein’s equations. This property is Birkhoff’s the-

orem5 – absence of monopole radiation in GR. Our aim here is to retain the attractiveness

of Weyl’s shortcut, while simultaneously proving the absence of the ṁ 6= 0 “non-solutions”.

In order to clarify the physics of this approach, we first establish it in the simpler, but quite

relevant, context of the Coulomb field in electrodynamics. We will also briefly discuss the

theorem’s basis in the deeper context of the theories’ Hamiltonian forms.

II. ELECTRODYNAMICS A LA WEYL

We derive the Coulomb field in Maxwell theory, in order to introduce and suitably extend

the Weyl method to include the vector Birkhoff’s theorem – constancy of electric charge.

Weyl’s general approach was to exploit the special symmetries of the desired solution by

using suitable coordinates and gauges, then insert the simplified field variables into the

action, and vary only these remaining functions instead of the original set of variables.

Spherical symmetry means that r is the only vector, hence the (A, A0) are restricted to

the form

A = Ar(r, t)r̂ A0 = A0(r, t)

B = 0 E =
(

A′
0 − Ȧr

)

r̂, (1)

primes and overdots respectively indicate radial and temporal derivatives. The vector po-

tential is necessarily a pure gauge, so can be removed. As we shall see, this seemingly

attractive step loses the Birkhoff part of Maxwell’s equations and hence requires the addi-

tional assumption of time-independence, thereby missing the fact that the latter is implied

by the theory.
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Let us now insert (1) into the Maxwell action,

IMax =
1

2

∫

d4x
(

E2 −B2
)

, (2)

to obtain the reduced form

IMax → 2π
∫

(

Ȧr − A′
0

)2
r2drdt; (3)

we consider only source-free regions throughout. [This approach is valid in arbitrary dimen-

sions, with r2 → rD−2.] If we impose Coulomb gauge, Ar = 0 before varying, we immediately

obtain the single field equation (r2A′
0)

′
= 0, whose solution is of course A0 = q(t)/r. How-

ever, we cannot then infer q̇ = 0, the subset that solves Maxwell’s equations. If instead, we

only set Ar = 0 after varying (2), we learn that the time derivative of the field equation also

vanishes – the variation of the gauge part gives

δI

δAr

∣

∣

∣

∣

Ar=0
= 4πr2Ȧ′

0(r, t) = 0 = q̇ (4)

Of course, we need not set Ar = 0 at all, the gauge invariant content of (2) being

∇ · E = 0 = ∇ · Ė, (5)

since varying Ar and A0 manifestly yields the respective time and space derivatives of the

same quantity, namely E. Note that the second equation

∇ · Ė = ∇ · (∇× B) = 0, (6)

reflects the Bianchi identities ∂µ (∂νF
µν) = 0, i.e. ∂0 (∂iF

0i) + ∂j (∂µF
µj) = 0, as the last

term is a field equation.

The time-constancy of spherical solutions is manifest in the action’s Hamiltonian form,

where (−E,A) are independent variables, the canonical “(p, q)” pairs:

IMax = −
∫

d4x
[

ET · ȦT + EL
(

ȦL − ∇A0

)

+
1

2

{

E2 +
(

∇ × AT
)2
}]

. (7)

We have used the orthogonal decomposition of a vector,

V = VT + VL , ∇ · VT ≡ 0 ≡ ∇× VL ,
∫

d3r V T · W L = 0 . (8)

Since time-dependence only appears in the “pq̇” terms, and there are no transverse spheri-

cally symmetric vectors, we learn immediately from varying the surviving component, AL,

that ĖL = 0, the rest of the action being AL-independent.
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The lesson, one that will carry over unaltered to GR, is that Weyl’s approach, using as

few functions as gauge choice allows, lulls one into the unjustified belief that all is time-

independent just because only spatial derivatives remain. This point is relevant because,

even if one does not assume time-independence but prematurely drops Ar, the resulting

equation for A0 has no explicit time-derivatives.

This is a good place to discuss the validity of the Weyl procedure itself. For the linear

Maxwell theory, it is easy enough to understand the “commutativity” between first inserting

a symmetric ansatz in an action before varying, or only doing so after full variation. Clearly,

Ė = ∇×B and ∇·E = 0 immediately degenerate, with the spherical symmetry requirement

that E = ∇φ, B = 0, into ∇2φ = 0, φ̇ = 0, which can then be variously decomposed in

different gauges. So no information is lost by varying the action if (and only if) both

functions are kept.

More generally, it is intuitively pretty clear that, since the solutions are extrema also

within the set of spherically symmetric trial variables, we will not get any false ones. That

we will also not miss any true solutions in this way is pretty reasonable as well. We will,

however, say no more on this deep and difficult problem nor on its extensive fine print; for

this, we refer to the original work2 and to a later exegesis specifically in GR3. Some of the

perils involved are illustrated in a recent note6.

III. GR WEYL – STATIC

The stage has now been set for our GR target. We approach it in two steps. The first

still adheres to the original Weyl line, losing time-independence. That will be followed by

the full Birkhoff treatment.

We begin with the general form of a spherically symmetric metric tensor gµν or its

corresponding interval ds2 = gµνdxµdxν . For completeness, we first set to rest the mis-

placed worry that spherical symmetry cannot mean anything in a theory with general

coordinate invariance; this is a misunderstanding of coordinates, having nothing to do

with geometry. The fancy answer is that symmetries are characterized by the existence

of (one or more) Killing vectors X(a)
µ obeying the invariant equation DµX

(a)
ν + DνX

(a)
µ ≡

∂µX(a)
ν + ∂νX

(a)
µ − (∂νgµα + ∂µgνα − ∂αgµν)X

α(a) = 0. For example, if there is an X(a)
µ which

takes the non-invariant form X(a)
µ = gµa in some coordinates, then the Killing equation im-
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mediately reduces to the statement that (in that frame) ∂agµν = 0. But it suffices simply

to remember what spherical symmetry means in Cartesian coordinates: given that xi is the

only vector and δij the only 2-tensor that can appear, then

gij = Aδij + Bxixj g0i = Cxi g00 = −D (9)

where (A, B, C, D) depend only on r2 ≡ (x2 + y2 + z2) and any other “irrelevant” parameters

such as time. The corresponding interval is:

ds2 = −Ddt2 + (A + Br2)dr2 + Ar2dΩ + 2Crdrdt (10)

where dΩ is the usual unit 2-sphere element, since xixjdxidxj ≡ r2dr2, δijdxidxj = dr2 +

r2dΩ. This four-function parametrization really consists of two physical, plus two gauge,

components – double the (A0, Ar) set of vector theory. Weyl’s choice was to diagonalize

away the drdt term, and use Schwarzschild coordinates, A = 1, leaving just one spatial and

one temporal metric component. We begin with the more instructive choice in which all

three functions (A, B, D) are kept, but still dropping the off-diagonal C. The latter is in fact

precisely the analog of the first pass in Maxwell theory, so we will not yet achieve Birkhoff’s

theorem; indeed, this pinpoints where the original Weyl ansatz is insufficient and requires

the redundant assumption of time-independence.

Our starting point then is the 3-function interval

ds2 = −ab2dt2 + a−1dr2 + c2dΩ (11)

where we have made things a lot easier to calculate by the above (a, b) parametrization.

There is no loss of generality in this, just looking ahead to the b = 1 result for Schwarzschild.

Calculation of the curvature cannot be avoided, even here, but it is mercifully short and

yields

IE =
∫

d4x
√
−gR ⇒ IE(a, b, c) = Ir + It (12)

Ir = 8π
∫

dtdr
(

ab′(c2)′ + b
(

1 + c′ (ac)′
))

(13)

It = 8π
∫

dtdr
ċ

a2b
(cȧ − aċ) . (14)

The two parts Ir and It of the action contain either space or time derivatives, but not both.

The original 2-function Weyl ansatz was to set c = r before varying, which is why he would
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never see It but only Ir; this leaves

IW (a, b) = 8π
∫

dr (b + rab′) (15)

which immediately yields the “Schwarzschild” result a = 1 − 2m
r

, and b = b0, but with

possibly time-dependent (b0, m). Time-dependence of b0 is irrelevant as it can be absorbed

into dt by fixing the remaining t → t′(t) gauge freedom.

If we keep all three functions, but drop the time-dependence, then (a, b) are parametrized

by c, which stays undetermined:

a =
1

c′2

(

1 − 2m

c

)

(16)

b = b0c
′,

corresponding to the interval

ds2 = −b2
0

(

1 − 2m

c

)

dt2 +
1

1 − 2m
c

dc2 + c2dΩ, (17)

using dr2 = dc2/c′2. This result shows the very special role played by Schwarzschild coordi-

nates; they are not so much a gauge as the natural parametrization of the interval in terms

of the 2-sphere “orbits”. Indeed, writing c = r in (17) is more an exercise in penmanship

than a choice of gauge!

IV. BIRKHOFF’S THEOREM

The Maxwell example linked absence of monopole radiation to that of “scalar” – he-

licity zero – modes. Let us first turn to linearized gravity, its direct counterpart. Here

the Hamiltonian form is expressed in terms of the conjugate pair of spatial tensors (πij,

hij ≡ gij − δij). The tensorial orthogonal transverse-longitudinal decomposition can be

written as

hij = hTT
ij +

(

∂ih
T
j + ∂jh

T
i

)

+ ∇−2∂2
ijh

L +
1

2

(

∂2
ij −

δij

∇2

)

hT . (18)

For our purposes, it suffices to note that spherically symmetric tensors lack the transverse-

traceless (TT) tensor quadrupole, and transverse vector (hT
i ) dipole, modes. The action

Iℓin[π, h] =
∫

d3rdt[πijhij − H(π, h)] (19a)
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then reduces to7

Iℓin[π, h] →
∫

d3rdt
(

πLḣL +
1

2
πT ḣT − H

)

. (19b)

The Hamiltonian’s details are irrelevant: all that counts for us is its (abelian) gauge invari-

ance, that it is independent of the two gauge functions (hL, πT ). Hence, just as in Maxwell

theory, we may immediately conclude from their variation that

∂0h
T = 0 = ∂0π

L. (20)

This time-independence, equivalent to ∂0 (∇ · E) = 0 is also a direct consequence of the

linearized Bianchi identities which state that (on shell) ∂0G
0µ
ℓin = 0, precisely the same

two statements as (6). Since our fields are tensorial, they have four (energy-momentum)

conservation laws rather than the single one of electrodynamics, though here there is only

radial momentum left. The full GR action can also be gauge-fixed to the simple (seeming!)

form7.

IE =
∫

d4x
(

πij
TT ġTT

ij − H(TT )
)

. (21)

The only time dependence is in the “TT” modes. Thus Birkhoff’s theorem holds also in

full GR and indeed even rids one of dipole radiation since dipoles cannot construct “TT”

tensors – in either the linearized or the full theory.

Let us now proceed to our concrete Weyl setting. Instead of keeping all four metric

components in the generic interval (10), we just introduce the off-diagonal one, which is

effectively the above gauge function πT in the spherical case. In order to avoid pedantic

overkill, let us use Schwarzschild coordinates ab initio here (since c just defines the “radial”

coordinate, we lose nothing by doing so from the start) and concentrate on the three (r, t)-

dependent functions (a, b, f)

ds2 = −ab2dt2 + a−1dr2 + r2dΩ + 2bfdrdt; (22)

writing the cross term as bf simplifies the calculation. The full three-function action is

neither pretty nor useful: all we need are the new terms linear in f , since we will set f = 0

after varying anyway (analogous to the electrodynamics case, where the gauge Ar = 0 is our

choice). The action then simply reduces to the old Weyl term I(a, b) plus the f -term that

will act as a Lagrange multiplier enforcing time-independence of m as follows:

I(a, b, t) = 8π
∫

drdt
(

b (r − ar)′ + a−1rf ȧ
)

. (23)
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The respective variations then yield (at f = 0) the desired constant mass geometry:

δI

δa

∣

∣

∣

∣

f=0
= rb′ = 0 ⇒ b = b(t) (24)

δI

δb

∣

∣

∣

∣

f=0
= (r − ar)′ = 0 ⇒ a = 1 − 2m(t)

r
(25)

δI

δf

∣

∣

∣

∣

f=0
= ra−1ȧ = 0 ⇒ ṁ = 0. (26)

As before, the time-dependence of b0(t) can be removed by a pure time redefinition, leaving

us with the correct Birkhoff statement ṁ = 0 as the gauge-varied field equation, just as

q̇ = 0 came from the analogous one in electrodynamics.

V. SUMMARY

We have attempted to present a logical and intuitive basis for deriving and understanding

the Schwarzschild solution and its time-independence. We followed the Maxwell example

to display the pattern of “true-plus-gauge” variables and the role played by the latter in

ensuring constancy of the corresponding “charges”.

Using the suitably extended Weyl method enabled us to avoid as much tensorial machin-

ery as possible while still keeping all the implications of Einstein’s equations. One obvious fu-

ture application is to the considerably more complicated Kerr solution, the time-independent

but rotating (stationary) dipole metric. Indeed, a useful exercise for the interested student

would be to derive the linearized version of this geometry!
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