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Problems and solutions

minimize f(x) subjectto x € Q C R". (1)

B f:Q — Ris (sufficiently) smooth (f € ¢*(Q), i € {1,2}).

B 1 objective; = variables; Q feasible set (determined by
finitely many constraints).

B » may be large.

B minimizing —f(x) = — maximizing f(z). Wlog, minimize.

x* global minimizer of f over Q@ < f(z) > f(z*), Vz € Q.

x* local minimizer of f over @ <« there exists N (z*, §) such
that f(x) > f(z*), for all z € Q@ NN (z*, d),

where N(z*,8) :={x € R": ||z — z*|| < d}and || - || IS the
Euclidean norm.

Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization — p. 2/17



Example problem in one dimension

Example: min f(x) subjectto a < ax <0b.
A

(%)

X % X
a b

m The feasible region 2 is the interval [a, b].

B The point x; Is the global minimizer; x5 Is a local

(non-global) minimizer; x = a Is a constrained local minimizer.
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Example problems in two dimensions

S —10

—4 0.5 15

Ackeley’s test function Rosenbrock’s test function
[see Wikipedia]
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Main classes of continuous optimization problems

Linear (Quadratic) programming: linear (quadratic) objective
and linear constraints in the variables

1
mIiF]QQ” clx (—I—E:I:TH:B) subject to azraz = b;,1 € E; a?m > b, €1,
TC

where ¢, a; € IR” for all i and H is n x n symmetric matrix;
E and I are finite index sets.

Unconstrained (Constrained) nonlinear programming

ml}:?” f(x) (subjectto c;(x) =0,2 € E; c;(x) > 0,1t € 1)
Trc

where f,¢; : R" — IR are (smooth, possibly nonlinear)
functions for all i; E and 1 are finite index sets.
Most real-life problems are nonlinear, often large-scale !
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Example: an OR application [Gould06]

Optimization of a high-pressure gas network
pressures p = (p;, ); flows g = (g5, j); demands d = (dk, k);
compressors. Maximize net flow s.t. the constraints:

y

Agq—d =20

ATp? 4 Kq28359 — 0
{ ATq+ 2-c(p,q) =0
Pmin < P < Pmax
min < ¢ < Gmax

\

mA Ay € {£1,0}; z € {0,1}

m 200 nodes and pipes, 26
machines: 400 variables;

m variable demand, (p, d) 10mins.
— 58,000 vars; real-time.
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Example: an inverse problem application  etoffice]

Data assimilation for weather forecasting

B best estimate of the current state of the atmosphere
—— find initial conditions x¢ for the numerical forecast
by solving the (ill-posed) nonlinear inverse problem

n;in Z(Hi[mi] —y) "R (H[zs] — i),

x; = S(t;,to, xg), S solution operator of the discrete nonlinear
model; H; maps x; to observations y;, R; error covariance
matrix of the observations at ¢;

Met Office

xo Of size 107 — 108;
observations m ~ 250,000.
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Optimality conditions for unconstrained problems

== algebraic characterizations of solutions — suitable for
computations.

B provide a way to guarantee that a candidate point is optimal
(sufficient conditions)

B indicate when a point is not optimal
(necessary conditions)

minimize f(x) subjectto z= € R™. (UP)

First-order necessary conditions: f € C1(R"™);
x* alocal minimizer of f — Vf(x*) = 0.

Vf(x) =0 <= « stationary point of f.
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Optimality conditions for unconstrained problems...

Lemma l. Let f e ¢, x € R™ and s € R™ with s £ 0. Then
Vi(x)Ts <0 = f(xz+ as) < f(z), Va > 0 sufficiently small.

Proof. fec'! — 3Fa > 0such that

Vfi(zx+ as)ls <0, Va € [0,a]. ()
Taylor's/Mean value theorem:
f(x + as) = f(z) + aVf(x + as)Ts, for some a € (0, o).
(0) = f(z+ as) < f(z), Va € [0,a]. O

e s descent direction for f at =z If Vf(x)Ts < 0.

Proof of 1st order necessary conditions. assume V f(z*) # 0.
s := —V f(x*) IS a descent direction for f at ¢ = =*:

Vi)' (=Vf(x*)) = =V (@) Vf(z*) = —||Vf()|[* <0
since Vf(z*) # 0 and ||a|| > 0 with equality iff a = 0.

Thus, by Lemma 1, z* IS not a local minimizer of f. O
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Optimality conditions for unconstrained problems...

e —Vf(x) IS a descent direction for f at  whenever Vv f(x) # 0.
e s descent direction for f at =z If Vf(x)Ts < 0, which Is
equivalent to

_ (=VS@)'s _ [Vf(x)"s]

cost=VI@): 8 = 5@ - sl ~ I F@) -1l

and so:

(—Vf(),s) € [0,7/2). ~

A descent direction Pz..
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Summary of first-order conditions. A look ahead

minimize f(x) subjectto z= € R™. (UP)

First-order necessary optimality conditions: f € C'(R"™);
x* alocal minimizerof f — Vf(z*) = 0.

A
T = arg max,crn f(x) f(x)
4
Vf(x) =0.
X % "X
a b

B Look at higher-order derivatives to distinguish between
minimizers and maximizers.
... except for convex functions.
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Optimality conditions for convex problems

mfconvex <= f(z+a(y—=)) < f(z) +a(f(y) — f(x)),
forall z, y € R*, a € [0, 1].

B < V?f(x) = 0 (positive semidefinite), for all z € R™, i.e.,

mst'V2f(x*)s > 0, Vs € R™; equivalently,
m eigenvalues \;(V2f(x*)) > 0,Vi € {1,...,n}.
If £ convex, then [Pb Sheet 1]

x* local minimizer — x* global minimizer.
x* stationary point — x* global minimizer.

Quadratic functions:  g(z) := g"x + ;2T He.

V2q(x) = H, for all x; if H is positive semidefinite, then g
convex; any stationary point x* is a global minimizer of q.
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Second-order optimality conditions (nonconvex fcts.)

Second-order necessary conditions: f € C?(R™);
xz* local minimizer of f = V?2f(x*) > 0 (positive semidefinite),

namely, sTV2f(z*)s > 0, for all s € R™. [local convexity]

Example: f(z) := z3, £* = 0 not a local minimizer but
f'(0) = £7(0) = 0.

Second-order sufficient conditions: f € C?(R™);
Vf(z*) = 0and V2f(z*) = 0 (positive definite), namely,
sI'V2f(z*)s > 0, for all s £ 0.

— z* (strict) local minimizer of f.

Example: f(z) := x*, * = 0 is a (strict) local minimizer but

f7(0) =o.
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Proof of second-order conditions

Let 2 and s # 0 In R™ be fixed. Let @ : [0, c0) — R Where
P(a) := f(z + as) With £ € ¢2(R™). Then (univariate)
Taylor's/Mean-value theorem gives for any o > 0 that

& () = ®(0) + a®’(0) + 2" (&) for some a € (0, a),
or equivalently, from def. of & and differentiation/chain rule:[po sheet 1]
f(z + as) = f(z) + asTV () + % sTV2f(x + as)s (0)
for some a € (0, o).
Proof of second order necessary conditions. Assume there
exists s € R™ with sTv2f(x*)s < 0. Then s 0and f € C?
Imply sTVv?2f(z* + as)s < 0 for all a € [0,a]. Employing this
and v f(xz*) = 01In (¢) with z = =* gives that for each
a € (0,@), there exists a € (0, «) such that

f(z* + as) = f(z*) + % sTV2f(a* + as)s < f(z*).

We have reached a contradiction with =* being a local minimizer.O
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Proof of second-order conditions ...

Recall (from previous slide) that for x € R?, s # 0 and a > 0,
f(z + as) = f(z) + asTVf(z) + % sTV2f(z + as)s ()
for some & € (0, ).

Proof of second order sufficient conditions. f € ¢? and
V2f(x*) = 0Imply V2f(x* 4+ s) = 0 for all z* + s € N (z*, d)
some neighbourhood of =*. For any such s with ||s|| < 4§, ()
with o = 1 and = = z*, gives, for some & € (0, 1),

f(z* +s) = f(z*) + 2TV f(2* + as)s > f(z*)

where we also used VvV f(z*) = 0 In the first equality and
V2f(x* + as) = 0 In the second inequality (note that

|z* + as — xz*|| < & since ||s|| < § and & € (0,1); thus

x* 4+ as € N(x*,8) which ensures that V2 f(z* + as) = 0.) O
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Stationary points of quadratic functions

m H € R™™" symmetric, g € R™: q(z):= gz + =" Hz.
Vq(z*) =0 <= Hxz*+ g = 0. linear system.

B H nonsingular: z* = —H1g unique stationary point.
B H positive definite — z* minimizer (a), €)).
B H negative definite — x* maximizer (b), e)).
B H indefinite — z* saddle point (c), f)).

B H singular and g + Hx = 0 consistent:

B H positive semidefinite — Infinitely many global
minimizers (d), g)).

m Similarly H negative semidefinite or indefinite.

General f: approximately locally quadratic around x* stationary.
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Stationary points of quadratic functions...

I * NNy
A Y
(@) Minimum (b) Maximum (c) Saddle (d) Semidefi-
nite
% % %
N
>>( \\
>SS
X X X
(e) Maximum or (f) Saddle (g) Semidefinite

minimum
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