
Lecture 1: Problems and solutions. Optimality
conditions for unconstrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization – p. 1/17



Problems and solutions

minimize f(x) subject to x ∈ Ω ⊆ R
n. (†)

f : Ω → R is (sufficiently) smooth (f ∈ Ci(Ω), i ∈ {1, 2}).

f objective; x variables; Ω feasible set (determined by
finitely many constraints).

n may be large.

minimizing −f(x) ≡ − maximizing f(x). Wlog, minimize.

x∗ global minimizer of f over Ω ⇐⇒ f(x) ≥ f(x∗), ∀x ∈ Ω.

x∗ local minimizer of f over Ω ⇐⇒ there exists N (x∗, δ) such
that f(x) ≥ f(x∗), for all x ∈ Ω ∩ N (x∗, δ),
where N (x∗, δ) := {x ∈ R

n : ‖x − x∗‖ ≤ δ} and ‖ · ‖ is the
Euclidean norm.

Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization – p. 2/17



Example problem in one dimension

Example : min f(x) subject to a ≤ x ≤ b.

x 1x 2x 

f(x)

ba
The feasible region Ω is the interval [a, b].
The point x1 is the global minimizer; x2 is a local

(non-global) minimizer; x = a is a constrained local minimizer.
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Example problems in two dimensions
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Ackeley’s test function Rosenbrock’s test function
[see Wikipedia]
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Main classes of continuous optimization problems

Linear (Quadratic) programming: linear (quadratic) objective
and linear constraints in the variables

min
x∈IRn

cTx

(

+
1

2
xTHx

)

subject to aT

i
x = bi, i ∈ E; aT

i
x ≥ bi, i ∈ I,

where c, ai ∈ IRn for all i and H is n × n symmetric matrix;
E and I are finite index sets.

Unconstrained (Constrained) nonlinear programming

min
x∈IRn

f(x) (subject to ci(x) = 0, i ∈ E; ci(x) ≥ 0, i ∈ I)

where f, ci : IRn
−→ IR are (smooth, possibly nonlinear)

functions for all i; E and I are finite index sets.
Most real-life problems are nonlinear, often large-scale !
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Example: an OR application [Gould’06]

Optimization of a high-pressure gas network
pressures p = (pi, i); flows q = (qj, j); demands d = (dk, k);
compressors. Maximize net flow s.t. the constraints:
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

Aq − d = 0

ATp2 + Kq2.8359 = 0

AT
2
q + z · c(p, q) = 0

pmin ≤ p ≤ pmax

qmin ≤ q ≤ qmax

A, A2 ∈ {±1, 0}; z ∈ {0, 1}
200 nodes and pipes, 26

machines: 400 variables;
variable demand, (p, d) 10mins.
−→ 58,000 vars; real-time.
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Example: an inverse problem application [MetOffice]

Data assimilation for weather forecasting
best estimate of the current state of the atmosphere
−→ find initial conditions x0 for the numerical forecast

by solving the (ill-posed) nonlinear inverse problem

min
x0

m
∑

i=0

(Hi[xi] − yi)
TR−1

i (H[xi] − yi),

xi = S(ti, t0, x0), S solution operator of the discrete nonlinear
model; Hi maps xi to observations yi, Ri error covariance
matrix of the observations at ti.

x0 of size 107 − 108;
observations m ≈ 250,000.
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Optimality conditions for unconstrained problems

== algebraic characterizations of solutions −→ suitable for
computations.

provide a way to guarantee that a candidate point is optimal
(sufficient conditions)

indicate when a point is not optimal
(necessary conditions)

minimize f(x) subject to x ∈ R
n. (UP)

First-order necessary conditions: f ∈ C1(Rn);
x∗ a local minimizer of f =⇒ ∇f(x∗) = 0.

∇f(x) = 0 ⇐⇒ x stationary point of f .
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Optimality conditions for unconstrained problems...

Lemma 1. Let f ∈ C1, x ∈ R
n and s ∈ R

n with s 6= 0. Then
∇f(x)T s < 0 =⇒ f(x + αs) < f(x), ∀α > 0 sufficiently small.

Proof. f ∈ C1 =⇒ ∃α > 0 such that
∇f(x + αs)T s < 0, ∀α ∈ [0, α]. (♦)

Taylor’s/Mean value theorem:
f(x + αs) = f(x) + α∇f(x + α̃s)T s, for some α̃ ∈ (0, α).
(♦) =⇒ f(x + αs) < f(x), ∀α ∈ [0, α]. �

• s descent direction for f at x if ∇f(x)T s < 0.

Proof of 1st order necessary conditions. assume ∇f(x∗) 6= 0.
s := −∇f(x∗) is a descent direction for f at x = x∗:
∇f(x∗)T (−∇f(x∗)) = −∇f(x∗)T∇f(x∗) = −‖∇f(x∗)||2 < 0

since ∇f(x∗) 6= 0 and ‖a‖ ≥ 0 with equality iff a = 0.
Thus, by Lemma 1, x∗ is not a local minimizer of f . �
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Optimality conditions for unconstrained problems...

• −∇f(x) is a descent direction for f at x whenever ∇f(x) 6= 0.
• s descent direction for f at x if ∇f(x)T s < 0, which is
equivalent to

cos〈−∇f(x), s〉 =
(−∇f(x))T s

‖∇f(x)‖ · ‖s‖
=

|∇f(x)T s|

‖∇f(x)‖ · ‖s‖
> 0,

and so:
〈−∇f(x), s〉 ∈ [0, π/2).

k

∆

–
k

f

p

A descent direction pk.
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Summary of first-order conditions. A look ahead

minimize f(x) subject to x ∈ R
n. (UP)

First-order necessary optimality conditions: f ∈ C1(Rn);
x∗ a local minimizer of f =⇒ ∇f(x∗) = 0.

x̃ = argmaxx∈Rn f(x)

⇓
∇f(x̃) = 0.

x 1x 2x 

f(x)

ba

Look at higher-order derivatives to distinguish between
minimizers and maximizers.

. . . except for convex functions.
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Optimality conditions for convex problems

f convex ⇐⇒ f(x + α(y − x)) ≤ f(x) + α(f(y) − f(x)),
for all x, y ∈ R

n, α ∈ [0, 1].

⇐⇒ ∇2f(x) � 0 (positive semidefinite), for all x ∈ R
n, i.e.,

sT∇2f(x∗)s ≥ 0, ∀ s ∈ R
n; equivalently,

eigenvalues λi(∇2f(x∗)) ≥ 0, ∀i ∈ {1, . . . , n}.

If f convex, then [Pb Sheet 1]

x∗ local minimizer =⇒ x∗ global minimizer.
x∗ stationary point =⇒ x∗ global minimizer.

Quadratic functions: q(x) := gTx + 1

2
xTHx.

∇2q(x) = H, for all x; if H is positive semidefinite, then q
convex; any stationary point x∗ is a global minimizer of q.
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Second-order optimality conditions (nonconvex fcts.)

Second-order necessary conditions: f ∈ C2(Rn);
x∗ local minimizer of f =⇒ ∇2f(x∗) � 0 (positive semidefinite),

namely, sT∇2f(x∗)s ≥ 0, for all s ∈ R
n. [local convexity]

Example: f(x) := x3, x∗ = 0 not a local minimizer but
f ′(0) = f

′′

(0) = 0.

Second-order sufficient conditions: f ∈ C2(Rn);
∇f(x∗) = 0 and ∇2f(x∗) ≻ 0 (positive definite), namely,

sT∇2f(x∗)s > 0, for all s 6= 0.

=⇒ x∗ (strict) local minimizer of f .

Example: f(x) := x4, x∗ = 0 is a (strict) local minimizer but
f

′′

(0) = 0.
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Proof of second-order conditions

Let x and s 6= 0 in R
n be fixed. Let Φ : [0,∞) −→ R where

Φ(α) := f(x + αs) with f ∈ C2(Rn). Then (univariate)
Taylor’s/Mean-value theorem gives for any α > 0 that

Φ(α) = Φ(0) + αΦ′(0) + α
2

2
Φ′′(α̃) for some α̃ ∈ (0, α),

or equivalently, from def. of Φ and differentiation/chain rule:[Pb Sheet 1]

f(x + αs) = f(x) + αsT∇f(x) + α
2

2
sT∇2f(x + α̃s)s (♦)

for some α̃ ∈ (0, α).

Proof of second order necessary conditions. Assume there
exists s ∈ R

n with sT∇2f(x∗)s < 0. Then s 6= 0 and f ∈ C2

imply sT∇2f(x∗ + αs)s < 0 for all α ∈ [0, α]. Employing this
and ∇f(x∗) = 0 in (♦) with x = x∗ gives that for each
α ∈ (0, α), there exists α̃ ∈ (0, α) such that

f(x∗ + αs) = f(x∗) + α
2

2
sT∇2f(x∗ + α̃s)s < f(x∗).

We have reached a contradiction with x∗ being a local minimizer.�
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Proof of second-order conditions ...

Recall (from previous slide) that for x ∈ R
n, s 6= 0 and α > 0,

f(x + αs) = f(x) + αsT∇f(x) + α
2

2
sT∇2f(x + α̃s)s (♦)

for some α̃ ∈ (0, α).

Proof of second order sufficient conditions. f ∈ C2 and
∇2f(x∗) ≻ 0 imply ∇2f(x∗ + s) ≻ 0 for all x∗ + s ∈ N (x∗, δ)

some neighbourhood of x∗. For any such s with ‖s‖ ≤ δ, (♦)
with α = 1 and x = x∗, gives, for some α̃ ∈ (0, 1),

f(x∗ + s) = f(x∗) + 1

2
sT∇2f(x∗ + α̃s)s ≥ f(x∗)

where we also used ∇f(x∗) = 0 in the first equality and
∇2f(x∗ + α̃s) ≻ 0 in the second inequality (note that
‖x∗ + α̃s − x∗‖ ≤ δ since ‖s‖ ≤ δ and α̃ ∈ (0, 1); thus
x∗ + α̃s ∈ N (x∗, δ) which ensures that ∇2f(x∗ + α̃s) ≻ 0.) �

Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization – p. 15/17



Stationary points of quadratic functions

H ∈ R
n×n symmetric, g ∈ R

n: q(x) := gTx + 1

2
xTHx.

∇q(x∗) = 0 ⇐⇒ Hx∗ + g = 0: linear system.

H nonsingular: x∗ = −H−1g unique stationary point.
H positive definite =⇒ x∗ minimizer (a), e)).
H negative definite =⇒ x∗ maximizer (b), e)).
H indefinite =⇒ x∗ saddle point (c), f)).

H singular and g + Hx = 0 consistent:
H positive semidefinite =⇒ infinitely many global

minimizers (d), g)).
Similarly H negative semidefinite or indefinite.

General f : approximately locally quadratic around x∗ stationary.
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Stationary points of quadratic functions...

*x
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