Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

minimize f(x) subject to $x \in \Omega \subseteq \mathbb{R}^n$. (†)

 $f: Ω → ℝ is (sufficiently) smooth (f ∈ Cⁱ(Ω), i ∈ {1,2}).$

• f objective; x variables; Ω feasible set (determined by finitely many constraints).

n may be large.

minimizing $-f(x) \equiv -$ maximizing f(x). Wlog, minimize.

 x^* global minimizer of f over $\Omega \iff f(x) \ge f(x^*), \forall x \in \Omega$.

 x^* local minimizer of f over $\Omega \iff$ there exists $\mathcal{N}(x^*, \delta)$ such that $f(x) \ge f(x^*)$, for all $x \in \Omega \cap \mathcal{N}(x^*, \delta)$, where $\mathcal{N}(x^*, \delta) := \{x \in \mathbb{R}^n : ||x - x^*|| \le \delta\}$ and $|| \cdot ||$ is the Euclidean norm.

Example problem in one dimension

The feasible region Ω is the interval [a, b].
 The point x₁ is the global minimizer; x₂ is a local (non-global) minimizer; x = a is a constrained local minimizer.

Example problems in two dimensions

Ackeley's test function

Rosenbrock's test function [see Wikipedia]

Main classes of continuous optimization problems

Linear (Quadratic) programming: linear (quadratic) objective and linear constraints in the variables

 $\min_{x\in \mathbb{R}^n} c^T x \left(+rac{1}{2}x^T H x
ight) ext{ subject to } a_i^T x = b_i, i\in E; \; a_i^T x \geq b_i, i\in I,$

where $c, a_i \in \mathbb{R}^n$ for all *i* and *H* is $n \times n$ symmetric matrix; *E* and *I* are finite index sets.

Unconstrained (Constrained) nonlinear programming

 $\min_{x\in {\sf I\!R}^n} f(x) \ (ext{subject to } c_i(x)=0, i\in E; \ c_i(x)\geq 0, i\in I)$

where $f, c_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ are (smooth, possibly nonlinear) functions for all *i*; *E* and *I* are finite index sets. Most real-life problems are nonlinear, often large-scale ! Optimization of a high-pressure gas network pressures $p = (p_i, i)$; flows $q = (q_j, j)$; demands $d = (d_k, k)$; compressors. Maximize net flow s.t. the constraints:

$$egin{aligned} Aq-d&=0\ A^Tp^2+Kq^{2.8359}&=0\ A_2^Tq+z\cdot c(p,q)&=0\ p_{\min}&\leq p\leq p_{\max}\ q_{\min}&\leq q\leq q_{\max} \end{aligned}$$

A, *A*₂ ∈ {±1,0}; *z* ∈ {0,1}
 200 nodes and pipes, 26 machines: 400 variables;
 variable demand, (*p*, *d*) 10mins. → 58,000 vars; real-time.

Data assimilation for weather forecasting

m

best estimate of the current state of the atmosphere \rightarrow find initial conditions x_0 for the numerical forecast by solving the (ill-posed) nonlinear inverse problem

$$\min_{x_0} \sum_{i=0}^m (H_i[x_i] - y_i)^T R_i^{-1} (H[x_i] - y_i),$$

 $x_i = S(t_i, t_0, x_0)$, S solution operator of the discrete nonlinear model; H_i maps x_i to observations y_i , R_i error covariance matrix of the observations at t_i

 x_0 of size $10^7 - 10^8$; observations $m \approx 250,000$.

Lecture 1: Problems and solutions. Optimality conditions for unconstrained optimization – p. 7/17 Observation - only guess Forecast - only guess Best combined guess

Optimality conditions for unconstrained problems

== algebraic characterizations of solutions \longrightarrow suitable for computations.

provide a way to guarantee that a candidate point is optimal (sufficient conditions)

 indicate when a point is not optimal (necessary conditions)

minimize f(x) subject to $x \in \mathbb{R}^n$. (UP)

First-order necessary conditions: $f \in C^1(\mathbb{R}^n)$; x^* a local minimizer of $f \implies \nabla f(x^*) = 0$. $\nabla f(x) = 0 \iff x$ stationary point of f.

Optimality conditions for unconstrained problems...

Lemma 1. Let $f \in C^1$, $x \in \mathbb{R}^n$ and $s \in \mathbb{R}^n$ with $s \neq 0$. Then $\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x), \quad \forall \alpha > 0$ sufficiently small. Proof. $f \in C^1 \implies \exists \overline{\alpha} > 0$ such that $\nabla f(x + \alpha s)^T s < 0, \quad \forall \alpha \in [0, \overline{\alpha}].$ (\Diamond) Taylor's/Mean value theorem: $f(x + \alpha s) = f(x) + \alpha \nabla f(x + \overline{\alpha} s)^T s$, for some $\overline{\alpha} \in (0, \alpha)$.

 $(\Diamond) \implies f(x + \alpha s) < f(x), \, \forall lpha \in [0, \overline{lpha}]. \ \Box$

• *s* descent direction for *f* at *x* if $\nabla f(x)^T s < 0$. Proof of 1st order necessary conditions. assume $\nabla f(x^*) \neq 0$. $s := -\nabla f(x^*)$ is a descent direction for *f* at $x = x^*$: $\nabla f(x^*)^T(-\nabla f(x^*)) = -\nabla f(x^*)^T \nabla f(x^*) = -\|\nabla f(x^*)\|^2 < 0$ since $\nabla f(x^*) \neq 0$ and $\|a\| \ge 0$ with equality iff a = 0. Thus, by Lemma 1, x^* is not a local minimizer of *f*. \Box

Optimality conditions for unconstrained problems...

-∇f(x) is a descent direction for f at x whenever ∇f(x) ≠ 0.
s descent direction for f at x if ∇f(x)^Ts < 0, which is equivalent to

$$\cos\langle -
abla f(x),s
angle = rac{(-
abla f(x))^Ts}{\|
abla f(x)\|\cdot\|s\|} = rac{|
abla f(x)^Ts|}{\|
abla f(x)\|\cdot\|s\|} > 0,$$

Summary of first-order conditions. A look ahead

minimize f(x) subject to $x \in \mathbb{R}^n$. (UP)First-order necessary optimality conditions: $f \in C^1(\mathbb{R}^n)$; x^* a local minimizer of $f \implies \nabla f(x^*) = 0$. $ilde{x} = rg \max_{x \in \mathbb{R}^n} f(x)$ f(x) $\nabla f(\tilde{x}) = 0.$ \dot{X}_{1} \dot{X}_2 \overline{x}

 Look at higher-order derivatives to distinguish between minimizers and maximizers.

a

... except for convex functions.

Optimality conditions for convex problems

 $\begin{array}{l} \blacksquare f \text{ convex } \iff f(x + \alpha(y - x)) \leq f(x) + \alpha(f(y) - f(x)), \\ & \text{ for all } x, \, y \in \mathbb{R}^n, \, \alpha \in [0,1]. \end{array}$

 $\square \iff
abla^2 f(x) \succeq 0$ (positive semidefinite), for all $x \in \mathbb{R}^n$, i.e.,

 $= s^T \nabla^2 f(x^*) s \ge 0, \, \forall \, s \in \mathbb{R}^n;$ equivalently,

eigenvalues $\lambda_i(
abla^2 f(x^*)) \geq 0, \, orall i \in \{1,\ldots,n\}.$

If f convex, then [Pb Sheet 1]

 x^* local minimizer $\implies x^*$ global minimizer.

 x^* stationary point $\implies x^*$ global minimizer.

Quadratic functions: $q(x) := g^T x + \frac{1}{2} x^T H x$.

 $abla^2 q(x) = H$, for all x; if H is positive semidefinite, then q convex; any stationary point x^* is a global minimizer of q.

Second-order optimality conditions (nonconvex fcts.)

 $\begin{array}{ll} \text{Second-order necessary conditions:} & f \in \mathcal{C}^2(\mathbb{R}^n);\\ x^* \text{ local minimizer of } f \implies \nabla^2 f(x^*) \succeq 0 \text{ (positive semidefinite),}\\ \text{namely, } s^T \nabla^2 f(x^*) s \geq 0, \text{ for all } s \in \mathbb{R}^n. \end{array} \qquad [\text{local convexity}] \end{array}$

Example: $f(x) := x^3$, $x^* = 0$ not a local minimizer but f'(0) = f''(0) = 0.

 $\begin{array}{ll} \mbox{Second-order sufficient conditions:} & f \in \mathcal{C}^2(\mathbb{R}^n);\\ \nabla f(x^*) = 0 \mbox{ and } \nabla^2 f(x^*) \succ 0 \mbox{ (positive definite), namely,}\\ & s^T \nabla^2 f(x^*) s > 0, \mbox{ for all } s \neq 0. \end{array}$

 $\implies x^*$ (strict) local minimizer of f.

Example: $f(x) := x^4$, $x^* = 0$ is a (strict) local minimizer but f''(0) = 0.

Proof of second-order conditions

Let x and $s \neq 0$ in \mathbb{R}^n be fixed. Let $\Phi : [0, \infty) \longrightarrow \mathbb{R}$ where $\Phi(\alpha) := f(x + \alpha s)$ with $f \in C^2(\mathbb{R}^n)$. Then (univariate) Taylor's/Mean-value theorem gives for any $\alpha > 0$ that

 $\Phi(\alpha) = \Phi(0) + \alpha \Phi'(0) + \frac{\alpha^2}{2} \Phi''(\tilde{\alpha})$ for some $\tilde{\alpha} \in (0, \alpha)$,

or equivalently, from def. of Φ and differentiation/chain rule:[Pb Sheet 1] $f(x + \alpha s) = f(x) + \alpha s^T \nabla f(x) + \frac{\alpha^2}{2} s^T \nabla^2 f(x + \tilde{\alpha} s) s$ (\Diamond) for some $\tilde{\alpha} \in (0, \alpha)$.

Proof of second order necessary conditions. Assume there exists $s \in \mathbb{R}^n$ with $s^T \nabla^2 f(x^*) s < 0$. Then $s \neq 0$ and $f \in C^2$ imply $s^T \nabla^2 f(x^* + \alpha s) s < 0$ for all $\alpha \in [0, \overline{\alpha}]$. Employing this and $\nabla f(x^*) = 0$ in (\Diamond) with $x = x^*$ gives that for each $\alpha \in (0, \overline{\alpha})$, there exists $\tilde{\alpha} \in (0, \alpha)$ such that

 $f(x^* + \alpha s) = f(x^*) + \frac{\alpha^2}{2}s^T \nabla^2 f(x^* + \tilde{\alpha} s)s < f(x^*).$ We have reached a contradiction with x^* being a local minimizer.

Proof of second-order conditions ...

Recall (from previous slide) that for $x \in \mathbb{R}^n$, $s \neq 0$ and $\alpha > 0$, $f(x + \alpha s) = f(x) + \alpha s^T \nabla f(x) + \frac{\alpha^2}{2} s^T \nabla^2 f(x + \tilde{\alpha} s) s$ (\Diamond) for some $\tilde{\alpha} \in (0, \alpha)$.

Proof of second order sufficient conditions. $f \in C^2$ and $\nabla^2 f(x^*) \succ 0$ imply $\nabla^2 f(x^* + s) \succ 0$ for all $x^* + s \in \mathcal{N}(x^*, \delta)$ some neighbourhood of x^* . For any such s with $||s|| \leq \delta$, (\Diamond) with $\alpha = 1$ and $x = x^*$, gives, for some $\tilde{\alpha} \in (0, 1)$,

$$f(x^* + s) = f(x^*) + \frac{1}{2}s^T \nabla^2 f(x^* + \tilde{\alpha}s)s \ge f(x^*)$$

where we also used $\nabla f(x^*) = 0$ in the first equality and $\nabla^2 f(x^* + \tilde{\alpha}s) \succ 0$ in the second inequality (note that $\|x^* + \tilde{\alpha}s - x^*\| \leq \delta$ since $\|s\| \leq \delta$ and $\tilde{\alpha} \in (0, 1)$; thus $x^* + \tilde{\alpha}s \in \mathcal{N}(x^*, \delta)$ which ensures that $\nabla^2 f(x^* + \tilde{\alpha}s) \succ 0$.) \Box

Stationary points of quadratic functions

 $H \in \mathbb{R}^{n imes n}$ symmetric, $g \in \mathbb{R}^n$: $q(x) := g^T x + rac{1}{2} x^T H x$.

 $abla q(x^*) = 0 \iff Hx^* + g = 0$: linear system.

• H nonsingular: $x^* = -H^{-1}g$ unique stationary point.

- *H* positive definite $\implies x^*$ minimizer (a), e)).
- *H* negative definite $\implies x^*$ maximizer (b), e)).
- *H* indefinite $\implies x^*$ saddle point (c), f)).
- H singular and g + Hx = 0 consistent:

■ *H* positive semidefinite \implies infinitely many global minimizers (d), g)).

Similarly H negative semidefinite or indefinite.

General f: approximately locally quadratic around x^* stationary.

Stationary points of quadratic functions...

