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Methods for local unconstrained optimization

minimize f(x) subject to x ∈ R
n (UP) [f ∈ C1(Rn) or f ∈ C2(Rn)]

A Generic Method (GM)

Choose ǫ > 0 and x0 ∈ R
n.

While (TERMINATION CRITERIA not achieved), REPEAT:

compute the change

xk+1−xk = F (xk, problem data), [linesearch, trust-region]

to ensure f(xk+1) ≤ f(xk).

set xk+1 := xk + F (xk, prob. data), k := k + 1. �

TC: ‖∇f(xk)‖ ≤ ǫ; maybe also, λmin(∇
2f(xk)) ≥ −ǫ.

e.g., xk+1 ≡ minimizer of some (simple) model of f around xk

−→ linesearch, trust-region methods.
if F = F (xk, xk−1, problem data) −→ conjugate gradients mthd.
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Issues to consider about GM

Finite termination of GM: for any ǫ > 0, there exists k such
that ‖∇f(xk)‖ ≤ ǫ? ⇐⇒ lim infk→∞ ‖∇f(xk)‖ = 0

Global convergence of GM: if ǫ := 0 and any x0 ∈ R
n:

∇f(xk) → 0, as k → ∞? all limit points of {xk} are then stationary.
[maybe also, lim infk→∞ λmin(∇

2f(xk)) ≥ 0?]

Local convergence of GM:
if ǫ := 0 and x0 sufficiently close to x∗ ≡ stationary/local
minimizer of f : xk → x∗, k → ∞?

Global/local complexity of GM: count number of iterations and
their cost required by GM to generate xk within desired
accuracy ǫ > 0, e.g., such that ‖∇f(xk)‖ ≤ ǫ.

[connection to convergence and its rate]

Rate of global/local convergence of GM.
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Rates of convergence of sequences: an example

lk := (1/2)k −→ 0 linearly,
qk := (1/2)2

k

−→ 0 quadratically,
sk := k−k −→ 0 superlinearly as k −→ ∞.
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Rates of convergence on a
log scale.

k lk qk

0 1 0.5

1 0.5 0.25

2 0.25 0.6 · (−1)

3 0.12 0.4 · (−2)

4 0.6 · (−2) 0.1 · (−4)

5 0.3 · (−2) 0.2 · (−9)

6 0.2 · (−2) 0.5 · (−19)

Notation: (−i) := 10−i.
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Rates of convergence of sequences

{xk} ⊂ R
n,x∗ ∈ R

n; xk → x∗ as k → ∞.
p-Rate of convergence: xk → x∗ with rate p ≥ 1 if ∃ρ > 0 and
k0 ≥ 0 such that

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖p, ∀k ≥ k0.

ρ convergence factor; ek := xk − x∗ error in xk ≈ x∗.

Linear convergence: p = 1 ⇒ ρ < 1; (asymptotically,)
no of correct digits grows linearly in the number of iterations.

Quadratic convergence: p = 2; (asymptotically,)
no of correct digits grows exponentially in the number of
iterations.

Superlinear convergence: ‖xk+1 − x∗‖/‖xk − x∗‖ → 0 as
k → ∞. [faster than linear, slower than quadratic; practically very acceptable ]
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Summary: methods for local unconstrained probs.

Consider (UP), with f ∈ C1(Rn) or C2(Rn).

Methods:
iterative: start from any initial ‘guess’ x0, generate xk, k ≥ 0.
find (approximate) local solutions, unless special structure

(convexity, etc.)
terminate when iterate within ǫ of local optimality.

Issues: global convergence, local convergence, rate of
convergence, complexity.

Information employed on each iteration:
current xk: linesearch and trust-region methods
current+previous: conjugate-gradients method etc
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A generic linesearch method

(UP): minimize f(x) subject to x ∈ R
n, where f ∈ C1 or C2(Rn).

A Generic Linesearch Method (GLM)

Choose ǫ > 0 and x0 ∈ R
n.

While ‖∇f(xk)‖ > ǫ, REPEAT:

compute a descent search direction sk ∈ R
n,

∇f(xk)T sk < 0;

compute a stepsize αk > 0 along sk such that

f(xk + αksk) < f(xk);

set xk+1 := xk + αksk and k := k + 1. �

Recall property of descent directions (Lemma 1, Lecture 1).
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Performing a linesearch

How to compute αk?

Exact linesearch:
αk := argminα>0 f(x

k + αsk).

computationally expensive
for nonlinear objectives.
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Exact linesearch for quadratic

functions

Example: q(x) = 1
2
xT





3 2

2 6



x + (−2 8)
T
x, where x ∈ R

2.

Let x1 := (−2 − 2)T and s1 := −∇q(x1) = (12 8)T .
Figure (a): contours of q and the line x1 + αs1; (b): the plane z(α) = x1 + αs1 is shown

cutting the q-surface; (c): plot of φ(α); (d): x2 is shown and φ′(α∗) = 0.(see next slide) �

Lecture 2: Methods for local unconstrained optimization. Linesearch methods – p. 8/17



Exact linesearches for quadratic objectives

q(x) = gTx + 1
2
xTHx, x ∈ R

n,

and let φk(α) := q(xk + αsk). Then

φ′(α) = d
dα

φ(α) =
∑n

i=1
dxi

dα
· ∂
∂xi

φ(α)

=
∑n

i=1 s
k
i

∂
∂xi

q(xk + αsk)= (sk)T∇q(xk + αsk).

∇q(x) = g + Hx and ∇q(xk + αsk) = g + H(xk + αsk).

=⇒ φ′(α) = (sk)T∇q(xk) + α(sk)THsk.

Thus α∗ stationary point of φ(α) iff (sk)THsk 6= 0 and
φ′(α∗) = 0 =⇒ α∗ = −(sk)T∇q(xk)/(sk)THsk.

α∗ global minimizer of φ(α) if (sk)THsk > 0.
for general f , no explicit expression of αk; approximate

minimizers of f(xk + αsk) may be used instead. [see Pb Sheet 1]
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Inexact linesearch

want stepsize αk not “too short”.

Example: f(x) = x2; x0 = 2; sk = −1 and αk = 1/(2k+1)

for all k. Then GLM gives xk −→ 1 as k −→ ∞. [see Pb Sheet 1]
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Inexact linesearch ...

want stepsize αk not “too short”.

A backtracking linesearch algorithm

Choose α(0) > 0 and τ ∈ (0, 1).

While f(xk + α(i)s
k)′′ ≥′′ f(xk), REPEAT:

set α(i+1) := τα(i) and i := i + 1.

END.
Set αk := α(i). �

• α(0) := 1; τ := 0.5 =⇒ α(0) := 1, α(1) := 0.5, α(2) := 0.25, ...

• “<”: simple or more sophisticated decrease in f at xk.
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Inexact linesearch ...

want stepsize αk not “too long” compared to the decrease in f .

Example: f(x) = x2; x0 = 2; sk = (−1)k+1 and αk = 2 + 3/2k+1

for all k. Then GLM gives xk −→ ±1 as k −→ ∞. [see Pb Sheet 1]
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Inexact linesearch ...

want stepsize αk not “too long” compared to the decrease in f .

The Armijo condition

Choose β ∈ (0, 1).

Compute αk > 0 such that

f(xk + αksk) ≤ f(xk) + βαk∇f(xk)T sk (∗)

is satisfied. �

• in practice, β := 0.1 or even β := 0.001.

• due to the descent condition, ∃αk > 0 (unknown explicitly
in general) such that (∗) holds for all α ∈ [0, αk]. [see Pb Sheet 2]

Choose αk as large as possible in (0, αk] or in other (greater)
intervals of positive α-values that may satisfy (∗).

Lecture 2: Methods for local unconstrained optimization. Linesearch methods – p. 13/17



Inexact linesearch ...

Φk : R → R, Φk(α) := f(xk + αsk), α ≥ 0. Then
Armijo ⇐⇒ Φk(α

k) ≤ Φk(0) + βαkΦ′(0).
Let yβ(α) := Φk(0) + βαΦ′(0), α ≥ 0.
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Inexact linesearch ...

The backtracking-Armijo (bArmijo) linesearch algorithm

Choose α(0) > 0, τ ∈ (0, 1) and β ∈ (0, 1)[at the start of GLM].

While f(xk + α(i)s
k) > f(xk) + βα(i)∇f(xk)T sk, REPEAT:

set α(i+1) := τα(i) and i := i + 1.

END.
Set αk := α(i). �

• α(0), β and τ chosen as before.

on each GLM iteration k, the bArmijo linesearch algorithm
terminates in a finite number of steps with αk > 0, due to the
descent condition. [see Pb Sheet 2]

[without any additional assumptions on f ∈ C1]
other popular/useful inexact linesearch techniques: Wolfe,

Goldstein-Armijo, etc.
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Global convergence of GLM

• f ∈ C1(Rn); ∇f is Lipschitz continuous (on R
n) iff ∃L > 0,

‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ R
n.

Lemma 2. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Then the Armijo condition is satisfied:

f(xk + αsk) ≤ f(xk) + βα∇f(xk)T sk for all α ∈ [0, αk
max],

where αk

max = (β − 1)∇f(xk)T sk/[L‖sk‖2].

Proof. First-order Taylor: for any α > 0 and some α̃ ∈ (0, α),
f(xk+αsk) = f(xk)+α∇f(xk)T sk+α[∇f(xk+α̃sk)−∇f(xk)]T sk

≤ f(xk) + α∇f(xk)T sk + α‖∇f(xk + α̃sk) − ∇f(xk)‖ · ‖sk‖

≤ f(xk) + α∇f(xk)T sk + αLα̃‖sk‖2 ≤ f(xk) + α∇f(xk)T sk + α2L‖sk‖2.
Thus Armijo condition (*) satisfied for all α ≥ 0 such that
f(xk) + α∇f(xk)T sk + α2L‖sk‖2 ≤ f(xk) + βα∇f(xk)T sk,
which is equivalent to α ∈ [0, αk

max]. �
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Global convergence of GLM ...

Lemma 3. Let f ∈ C1(Rn) with ∇f Lipschitz continuous with
Lipschitz constant L. Then the bArmijo stepsize αk satisfies

αk ≥ min{α(0), τα
k
max} for all k ≥ 0.

Proof of Lemma 3. If α(0) satisfies the Armijo condition (*),
bArmijo terminates with i = 0 and αk = α(0). Else, it will
terminate as soon as αk ≤ αk

max. Then, let (i − 1) be the last
iteration such that α(i−1) > αk

max and α(i) ≤ αk
max. It follows

that αk = α(i) = τα(i−1)> ταk
max. Note that if α(0) > αk

max, then
α(i) = τ iα(0) ≤ αk

max for any i ≥ log(α(0)/α
k
max)/| log τ |. �

for the global convergence of GLM, we need a lower bound
on the bArmijo stepsize (as in Lemma 3), not just to know that
such a stepsize exists; hence we required stronger
assumptions on f . (global convergence of GLM to be continued ...)
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