Lecture 2: Methods for local unconstrained optimization. Linesearch methods

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Methods for local unconstrained optimization

minimize f(x) subject to $x \in \mathbb{R}^n$ (UP) $[f \in \mathcal{C}^1(\mathbb{R}^n) \text{ or } f \in \mathcal{C}^2(\mathbb{R}^n)]$ A Generic Method (GM)

Choose $\epsilon > 0$ and $x^0 \in \mathbb{R}^n$. While (TERMINATION CRITERIA not achieved), REPEAT:

compute the change

 $x^{k+1} - x^k = F(x^k, \text{problem data}),$ [linesearch, trust-region]

to ensure $f(x^{k+1}) \leq f(x^k)$.

set $x^{k+1}:=x^k+F(x^k, ext{prob.}$ data), k:=k+1. \square

 TC: ||∇f(x^k)|| ≤ ε; maybe also, λ_{min}(∇²f(x^k)) ≥ -ε.
 e.g., x^{k+1} ≡ minimizer of some (simple) model of f around x^k → linesearch, trust-region methods.

If $F = F(x_k, x_{k-1}, \text{problem data}) \longrightarrow \text{conjugate gradients mthd}$.

Finite termination of GM: for any $\epsilon > 0$, there exists k such that $\|\nabla f(x^k)\| \le \epsilon$? $\iff \liminf_{k \to \infty} \|\nabla f(x^k)\| = 0$

 $\begin{array}{ll} \mbox{Global convergence of GM:} & \mbox{if } \epsilon := 0 \mbox{ and } \underline{any} \ x^0 \in \mathbb{R}^n \\ \nabla f(x^k) \to 0, \mbox{ as } k \to \infty? \mbox{ all limit points of } \{x^k\} \mbox{ are then stationary.} \\ \mbox{[maybe also, $\lim \inf_{k \to \infty} \lambda_{\min}(\nabla^2 f(x^k)) \ge 0?]} \end{array}$

Local convergence of GM:

if $\epsilon := 0$ and x^0 sufficiently close to $x^* \equiv$ stationary/local minimizer of f: $x^k \to x^*, k \to \infty$?

Global/local complexity of GM: count number of iterations and their cost required by GM to generate x^k within desired accuracy $\epsilon > 0$, e.g., such that $\|\nabla f(x^k)\| \le \epsilon$. [connection to convergence and its rate]

Rate of global/local convergence of GM.

Rates of convergence of sequences: an example

$$\begin{split} l^k &:= (1/2)^k \longrightarrow 0 ext{ linearly,} \\ q^k &:= (1/2)^{2^k} \longrightarrow 0 ext{ quadratically,} \\ s^k &:= k^{-k} \longrightarrow 0 ext{ superlinearly as } k \longrightarrow \infty. \end{split}$$

igkrianglek	l^k	q^k
0	1	0.5
1	0.5	0.25
2	0.25	$0.6\cdot(-1)$
3	0.12	$0.4\cdot(-2)$
4	$0.6\cdot(-2)$	$0.1 \cdot (-4)$
5	$0.3\cdot(-2)$	$0.2\cdot(-9)$
6	$0.2\cdot(-2)$	$0.5\cdot(-19)$

Notation: $(-i) := 10^{-i}$.

Rates of convergence of sequences

 $\{x^k\} \subset \mathbb{R}^n, x^* \in \mathbb{R}^n; x^k \to x^* \text{ as } k \to \infty.$ p-Rate of convergence: $x^k \to x^*$ with rate $p \ge 1$ if $\exists \rho > 0$ and $k_0 \ge 0$ such that

$$\|x^{k+1} - x^*\| \le \rho \|x^k - x^*\|^p, \quad \forall k \ge k_0.$$

ightharpoons
ho convergence factor; $e^k := x^k - x^*$ error in $x^k \approx x^*$.

Linear convergence: $p = 1 \implies \rho < 1$; (asymptotically,) no of correct digits grows linearly in the number of iterations.

Quadratic convergence: p = 2; (asymptotically,) no of correct digits grows exponentially in the number of iterations.

Summary: methods for local unconstrained probs.

Consider (UP), with $f \in \mathcal{C}^1(\mathbb{R}^n)$ or $\mathcal{C}^2(\mathbb{R}^n)$.

Methods:

- iterative: start from any initial 'guess' x^0 , generate x^k , $k \ge 0$.
- find (approximate) local solutions, unless special structure (convexity, etc.)
- terminate when iterate within ϵ of local optimality.

Issues: global convergence, local convergence, rate of convergence, complexity.

Information employed on each iteration: current *x*^{*k*}: linesearch and trust-region methods current+previous: conjugate-gradients method etc

A generic linesearch method

(UP): minimize f(x) subject to $x \in \mathbb{R}^n$, where $f \in \mathcal{C}^1$ or $\mathcal{C}^2(\mathbb{R}^n)$. A Generic Linesearch Method (GLM) Choose $\epsilon > 0$ and $x^0 \in \mathbb{R}^n$. While $\| \nabla f(x^k) \| > \epsilon$, REPEAT: \blacksquare compute a <u>descent</u> search direction $s^k \in \mathbb{R}^n$, $\nabla f(x^k)^T s^k < 0;$ \blacksquare compute a stepsize $lpha^k > 0$ along s^k such that $f(x^k + \alpha^k s^k) < f(x^k);$ set $x^{k+1}:=x^k+lpha^ks^k$ and k:=k+1.

Recall property of descent directions (Lemma 1, Lecture 1).

Performing a linesearch

How to compute α^k ?

Exact linesearch: $\alpha^k := \arg\min_{\alpha>0} f(x^k + \alpha s^k).$

computationally expensive for nonlinear objectives.

Figure (a): contours of q and the line $x^1 + \alpha s^1$; (b): the plane $z(\alpha) = x^1 + \alpha s^1$ is shown cutting the q-surface; (c): plot of $\phi(\alpha)$; (d): x^2 is shown and $\phi'(\alpha^*) = 0$.(see next slide)

Exact linesearches for quadratic objectives

$$q(x) = g^T x + \frac{1}{2} x^T H x, \quad x \in \mathbb{R}^n,$$

and let $\phi_k(\alpha) := q(x^k + \alpha s^k)$. Then
 $\phi'(\alpha) = \frac{d}{d\alpha} \phi(\alpha) = \sum_{i=1}^n \frac{dx_i}{d\alpha} \cdot \frac{\partial}{\partial x_i} \phi(\alpha)$
 $= \sum_{i=1}^n s_i^k \frac{\partial}{\partial x_i} q(x^k + \alpha s^k) = (s^k)^T \nabla q(x^k + \alpha s^k).$
 $\nabla q(x) = g + H x$ and $\nabla q(x^k + \alpha s^k) = g + H(x^k + \alpha s^k).$
 $\Rightarrow \phi'(\alpha) = (s^k)^T \nabla q(x^k) + \alpha (s^k)^T H s^k.$
Thus α^* stationary point of $\phi(\alpha)$ iff $(s^k)^T H s^k \neq 0$ and
 $\phi'(\alpha^*) = 0 \Rightarrow \alpha^* = -(s^k)^T \nabla q(x^k)/(s^k)^T H s^k.$
 α^* global minimizer of $\phi(\alpha)$ if $(s^k)^T H s^k > 0.$
for general f , no explicit expression of α^k ; approximate
minimizers of $f(x^k + \alpha s^k)$ may be used instead. [see Pb Sheet 1]

Inexact linesearch

• want stepsize α^k not "too short".

Example: $f(x) = x^2$; $x^0 = 2$; $s^k = -1$ and $\alpha^k = 1/(2^{k+1})$ for all k. Then GLM gives $x^k \longrightarrow 1$ as $k \longrightarrow \infty$. [see Pb Sheet 1]

• want stepsize α^k not "too short".

A backtracking linesearch algorithm

Choose $\alpha_{(0)} > 0$ and $\tau \in (0, 1)$. While $f(x^k + \alpha_{(i)}s^k)'' \ge '' f(x^k)$, REPEAT: set $\alpha_{(i+1)} := \tau \alpha_{(i)}$ and i := i + 1. END. Set $\alpha^k := \alpha_{(i)}$.

• $\alpha_{(0)} := 1; \tau := 0.5 \implies \alpha_{(0)} := 1, \alpha_{(1)} := 0.5, \alpha_{(2)} := 0.25, \dots$

• "<": simple or more sophisticated decrease in f at x^k .

• want stepsize α^k not "too long" compared to the decrease in f.

Example: $f(x) = x^2$; $x^0 = 2$; $s^k = (-1)^{k+1}$ and $\alpha^k = 2 + 3/2^{k+1}$ for all k. Then GLM gives $x^k \longrightarrow \pm 1$ as $k \longrightarrow \infty$. [see Pb Sheet 1]

want stepsize α^k not "too long" compared to the decrease in f.

The Armijo condition

Choose $eta \in (0,1)$. Compute $lpha^k > 0$ such that

$$f(x^k + \alpha^k s^k) \le f(x^k) + \beta \alpha^k \nabla f(x^k)^T s^k \qquad (*)$$

is satisfied. \Box

• in practice, $\beta := 0.1$ or even $\beta := 0.001$.

• due to the descent condition, $\exists \overline{\alpha}^k > 0$ (unknown explicitly in general) such that (*) holds for all $\alpha \in [0, \overline{\alpha}^k]$. [see Pb Sheet 2] Choose α^k as large as possible in $(0, \overline{\alpha}^k]$ or in other (greater) intervals of positive α -values that may satisfy (*).

$$egin{aligned} \Phi_k: \mathbb{R} o \mathbb{R}, & \Phi_k(lpha) := f(x^k + lpha s^k), & lpha \ge 0. \ ext{Then} \ Armijo \iff \Phi_k(lpha^k) \le \Phi_k(0) + eta lpha^k \Phi'(0). \ ext{Let} \ y_eta(lpha) := \Phi_k(0) + eta lpha \Phi'(0), & lpha \ge 0. \end{aligned}$$

The backtracking-Armijo (bArmijo) linesearch algorithm

Choose $\alpha_{(0)} > 0$, $\tau \in (0,1)$ and $\beta \in (0,1)$ [at the start of GLM]. While $f(x^k + \alpha_{(i)}s^k) > f(x^k) + \beta \alpha_{(i)} \nabla f(x^k)^T s^k$, REPEAT: set $\alpha_{(i+1)} := \tau \alpha_{(i)}$ and i := i + 1. END. Set $\alpha^k := \alpha_{(i)}$.

• $\alpha_{(0)}$, β and τ chosen as before.

on each GLM iteration k, the bArmijo linesearch algorithm terminates in a finite number of steps with $\alpha^k > 0$, due to the descent condition.
[see Pb Sheet 2]

[without any additional assumptions on $f \in C^1$] other popular/useful inexact linesearch techniques: Wolfe,

Goldstein-Armijo, etc.

• $f \in \mathcal{C}^1(\mathbb{R}^n); \,
abla f$ is Lipschitz continuous (on \mathbb{R}^n) iff $\exists L > 0$, $\|
abla f(y) -
abla f(x)\| \leq L \|y - x\|, \quad \forall x, \, y \in \mathbb{R}^n.$

Lemma 2. Let $f \in C^1(\mathbb{R}^n)$ with ∇f Lipschitz continuous with Lipschitz constant *L*. Then the Armijo condition is satisfied:

$$\begin{split} f(x^k + \alpha s^k) &\leq f(x^k) + \beta \alpha \nabla f(x^k)^T s^k \text{ for all } \alpha \in [0, \alpha_{\max}^k],\\ \text{where } \alpha_{\max}^k &= (\beta - 1) \nabla f(x^k)^T s^k / [L \| s^k \|^2]. \end{split}$$

Proof. First-order Taylor: for any $\alpha > 0$ and some $\tilde{\alpha} \in (0, \alpha)$, $f(x^k + \alpha s^k) = f(x^k) + \alpha \nabla f(x^k)^T s^k + \alpha [\nabla f(x^k + \tilde{\alpha} s^k) - \nabla f(x^k)]^T s^k$ $\leq f(x^k) + \alpha \nabla f(x^k)^T s^k + \alpha \|\nabla f(x^k + \tilde{\alpha} s^k) - \nabla f(x^k)\| \cdot \|s^k\|$ $\leq f(x^k) + \alpha \nabla f(x^k)^T s^k + \alpha L \tilde{\alpha} \|s^k\|^2 \leq f(x^k) + \alpha \nabla f(x^k)^T s^k + \alpha^2 L \|s^k\|^2$. Thus Armijo condition (*) satisfied for all $\alpha \geq 0$ such that $f(x^k) + \alpha \nabla f(x^k)^T s^k + \alpha^2 L \|s^k\|^2 \leq f(x^k) + \beta \alpha \nabla f(x^k)^T s^k$, which is equivalent to $\alpha \in [0, \alpha_{\max}^k]$. \Box **Lemma 3.** Let $f \in C^1(\mathbb{R}^n)$ with ∇f Lipschitz continuous with Lipschitz constant *L*. Then the bArmijo stepsize α^k satisfies

 $\alpha^k \geq \min\{\alpha_{(0)}, \tau \alpha_{\max}^k\}$ for all $k \geq 0$.

Proof of Lemma 3. If $\alpha_{(0)}$ satisfies the Armijo condition (*), bArmijo terminates with i = 0 and $\alpha^k = \alpha_{(0)}$. Else, it will terminate as soon as $\alpha^k \leq \alpha_{\max}^k$. Then, let (i - 1) be the last iteration such that $\alpha_{(i-1)} > \alpha_{\max}^k$ and $\alpha_{(i)} \leq \alpha_{\max}^k$. It follows that $\alpha^k = \alpha_{(i)} = \tau \alpha_{(i-1)} > \tau \alpha_{\max}^k$. Note that if $\alpha_{(0)} > \alpha_{\max}^k$, then $\alpha_{(i)} = \tau^i \alpha_{(0)} \leq \alpha_{\max}^k$ for any $i \geq \log(\alpha_{(0)}/\alpha_{\max}^k)/|\log \tau|$.

for the global convergence of GLM, we need a lower bound on the bArmijo stepsize (as in Lemma 3), not just to know that such a stepsize exists; hence we required stronger assumptions on f.