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Global convergence of GLM (continued)

Theorem 4. Let f € c*(R™) be bounded below on R™ by fiow-.
Let v £ Lipschitz continuous. Apply GLM with bArmijo
linesearch to minimizing f with € := 0. Then

either
there exists 1 > 0 such that vf(z!) =0

kT ok
lim mim{lvf(a3 )8 |,|Vf(wk)Tsk|} = 0.

ko0 I

Proof of Theorem 4. Assume Vv f(z*) # o for all K so GLM
does not terminate finitely. Then Armijo condition (*) gives
f(x®) — f(x*T) > Bak(—Vf(z*))Ts* for all £ > o.
Summing this up from k£ = 0 to k£ = i, consecutive terms on
the left-hand side cancel to give
F(x0) — (@) > BY o a®(—V f(z*))Ts* forall i > o.
As f is bounded below by fiow, f(z*11) > fiow for alli > 0.

or
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Global convergence of GLM ...

Proof of Theorem 4. Thus we deduce from the above that

00 > f(x°) — flow = B pro &®|VF(z*)) s, )
where we also used that v £(z*)Ts* < 0 so that
(=Vf(zF))Tsk = |V f(z*))Ts*|. We deduce from the
convergence of the series in (1) that

lim o®|Vf(z*)Ts*| =0. (@
k—> o0

Let i1 = {k: oy > 7ak_  }and Ko = {k: ap) < 7a®__}.

max max

For all kK € K;, we have from Lemmas 2 & 3 that
T 2
Ozk|Vf(CBk))TSk| > (1—L,3)7' ) (lVf(mk) Skl) > 0

[s¥]]
and so (2) implies limy_ oo ke, |[VF(2F)Ts*|/]|s*|| = 0.
Lemma 3 gives that o* > g for all £ € K¢, and so (2)

provides limg_, oo kexc, |V f(2*)Ts®| = 0. These two limits and
the property min{as, b} < ar, bi, Vk, give the required limit.C]

Lecture 3: Linesearch methods (continued). Steepest descent methods — p. 3/15



Global convergence of GLM ...

Interpretation of Theorem 4: Recall

_ (=VF@EF)TsE V()T SR
€08 Ok = [T F@m 5] — TVF@H T

Then Th 4 gives, if vV £(z*) #£ o for all &,

klim IV £(z®)|| - cos 6, - min{1, ||s*||} = 0.
— 00

A descent direction py.
Thus to ensure global convergence of GLM, namely,

|V f(2*)|| — 0 as k — oo, it is not sufficient to have s* be
descent for each k; we need cos 6, > § > 0 for all k, so that s* is
prevented from becoming orthogonal to the gradient as k increases.
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Summary and a look ahead

Linesearch methods:

m Linesearch: how to choose the stepsize o*, from any z*
and along any descent direction s*.

m How to choose a descent direction s*? What are the
important such choices of s*?

m Steepest descent direction (next).
m Newton direction.
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Steepest descent method

Steepest descent (SD) direction: set s* := —V f(z*), k£ > 0,
In Generic Linesearch Method (GLM).

m s* descent direction whenever V f(z*) # 0:

Vf@k)Tsk <0 <= V()T (=Vf(z")) <0 <= —||[Vf(z")|I* <o.

m s* steepest descent: unique global solution of
minimize;crn f(xF) + sTVF(x¥) subject to ||s|| = ||V Ff(zF)].

Cauchy-Schwarz: |sTV f(zF)| < ||s|| - |V £(z®)]|, Vs,
with equality iff s is proportional to |V £ (z")]|.
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Steepest descent methods

Method of steepest descent (SD): GLM with s* == SD
direction; any linesearch.

Steepest Descent (SD) Method
Choose € >0 and z° € R®. Wile ||Vf(z*)| > e REPEAT:
Econpute sk = —Vf(zF).

mconpute a stepsize af >0 along s* such that
f(x* + a*s*) < £(2");
mset zFtl:= xF + a*sk and k:= k + 1. []

m SD-e ;== SD method with exact linesearches:
m SD-bA == SD method with bArmijo linesearches.
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Global convergence of steepest descent methods

e f € CY(R™); V£ is Lipschitz continuous (on R”?) iff 3L > 0,
IVF(y) = Vi) < Llly —z||, Vz,yeR™

Theorem 5 Let f € C'(R™) be bounded below on R™.

Let V f be Lipschitz continuous. Apply the SD-e or the SD-bA
method to minimizing f with € := 0.

Then both variants of the SD method have the property:

either

there exists I > 0 such that Vf(z!) =0
or

|V £(zF)|| — 0as k — oo.

Proof for SD-bA. Let s* = —V f(z*) forallkin Th4. O

SD methods have excellent global convergence properties
(under weak assumptions).
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Some disadvatanges of steepest descent methods

m SD methods are scale-dependent.

poorly scaled problem/variables —> SD direction gives little progress.

m Usually, SD methods converge very slowly to solution,
asymptotically.
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The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

a 0

1 1
f(2) = (avi+a3) = ~a” ( -

) Ly L = (wl 332)T9 (<>)

where a > 0. Note z* = (0 0)T unique global minimizer.
BMa>1 — fpoorly scaled (or poorly conditioned).
m apply SD-e to (¢) starting at 2% := (1 a)?. Thensee Pb Sheet 2]

—_1\k [ (_1)k
xk=<a 1) <( 1) ), k> 0.
a-+1 a
— zF 5 0ask — oo, linearly with p := |(a — 1) /(a + 1)|

convergence factor.
Bma>1— pclosertol — SD-e converges very slowly.
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The scale-dependence of steepest descent

Example of a well-scaled quadratic.

Linear transformation of variables:

al’2 0
— £X.
J 0 1

m let f(y) := f(xz(y)), namely f in the new coordinates y.
— f(y) = 39"y = 3 (v + v).

—  f well-scaled.
m y* = (0 0)T unique global minimizer.

m apply SD-e to f from any y° € R2: y! = (0 0)T = y*.
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The scale-dependence of steepest descent

| | | | |
Lo B w N = o = N w B [&)]
T

The effect of problem scaling on SD-e performance.
Left figure: a = 10°%-¢ (mildly poor scaling).
Right figure: a = 1 (“perfect” scaling).
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Local rate of convergence for steepest descent

m Usually, SD methods converge very slowly to solution,
asymptotically.

theory: very slow conv.

1t

nu merICS break-down ————
(cumulation of round-off |\
and ill-conditioning). ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ok \‘
f(x1,x2) = 10(x2 — w% )2 \‘\

-1 N =

-0.5 I N I I I ! . | |
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

SD-bA applied to the Rosenbrock
function f.
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution,
| f (") — f(z)] < plf(2®) — f(=*)], VE suff. large

BUT convergence factor p v. close to 1 usually!

Theorem 6 f € C?; z* local minimizer of f with V2 f(x*)
positive definite — A* __, A* . eigenvalues.

Apply SD-e to min f. If z¥ — z* as £k — oo, then f(xF)
converges linearly to f(x*),

* 2
p < (225311) ‘= pSD;
where k(xz*) = A* __/X* . condition number of V2 f(x*).
e practice: p = psp;
for Rosenbrock f: k(x*) = 258.10, psp ~ 0.984.
e x(z*) = 800, f(z) =1, f(=*) = 0. SD-e gives
f(x*) ~ 0.007 after 1000 iterations!
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Summary: steepest descent methods

m first-order method —— inexpensive.

m global convergence under weak assumptions, but no
second-order optimality guarantees for the generated
solution.

m scale-dependent; too expensive, or impossible, to make a
function well-scaled.

® when the objective is poorly scaled, very very slow
convergence to a solution; hence, not used in general.

m useful sometimes: for example, for some convex
problems with special structure that are very well
conditioned (compressed sensing, etc).
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