Lecture 3: Linesearch methods (continued). Steepest descent methods

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Global convergence of GLM (continued)

Theorem 4. Let $f \in C^1(\mathbb{R}^n)$ be bounded below on \mathbb{R}^n by f_{low} . Let ∇f Lipschitz continuous. Apply GLM with bArmijo linesearch to minimizing f with $\epsilon := 0$. Then either

there exists $l \ge 0$ such that $\nabla f(x^l) = 0$

or

$$\lim_{k \to \infty} \min \left\{ \frac{|\nabla f(x^k)^T s^k|}{\|s^k\|}, |\nabla f(x^k)^T s^k| \right\} = 0.$$

Proof of Theorem 4. Assume $\nabla f(x^k) \neq 0$ for all k so GLM does not terminate finitely. Then Armijo condition (*) gives

 $f(x^k) - f(x^{k+1}) \ge \beta \alpha^k (-\nabla f(x^k))^T s^k$ for all $k \ge 0$.

Summing this up from k = 0 to k = i, consecutive terms on the left-hand side cancel to give

$$f(x^0) - f(x^{i+1}) \ge eta \sum_{k=0}^i lpha^k (-
abla f(x^k))^T s^k$$
 for all $i \ge 0$.
As f is bounded below by $f_{ ext{low}}$, $f(x^{i+1}) \ge f_{ ext{low}}$ for all $i \ge 0$.

Proof of Theorem 4. Thus we deduce from the above that $\infty > f(x^0) - f_{low} \ge \beta \sum_{k=0}^{\infty} \alpha^k |\nabla f(x^k)|^T s^k|$, (1) where we also used that $\nabla f(x^k)^T s^k < 0$ so that $(-\nabla f(x^k))^T s^k = |\nabla f(x^k)|^T s^k|$. We deduce from the convergence of the series in (1) that

 $\lim_{k\longrightarrow\infty} lpha^k |
abla f(x^k))^T s^k | = 0.$ (2)

Let $\mathcal{K}_1 = \{k : \alpha_{(0)} \ge \tau \alpha_{\max}^k\}$ and $\mathcal{K}_2 = \{k : \alpha_{(0)} < \tau \alpha_{\max}^k\}$. For all $k \in \mathcal{K}_1$, we have from Lemmas 2 & 3 that

$$|lpha^k|
abla f(x^k))^T s^k| \geq rac{(1-eta) au}{L} \cdot \left(rac{|
abla f(x^k)^T s^k|}{\|s^k\|}
ight)^2 \geq 0$$

and so (2) implies $\lim_{k\to\infty,k\in\mathcal{K}_1} |\nabla f(x^k)^T s^k| / ||s^k|| = 0$. Lemma 3 gives that $\alpha^k \ge \alpha_{(0)}$ for all $k \in \mathcal{K}_2$ and so (2) provides $\lim_{k\to\infty,k\in\mathcal{K}_2} |\nabla f(x^k)^T s^k| = 0$. These two limits and the property $\min\{a_k, b_k\} \le a_k, b_k, \forall k$, give the required limit.

Interpretation of Theorem 4: Recall

$$\cos \theta_k = \frac{(-\nabla f(x^k))^T s^k}{\|\nabla f(x^k)\| \cdot \|s^k\|} = \frac{|\nabla f(x^k)^T s^k|}{\|\nabla f(x^k)\| \cdot \|s^k\|}.$$
Then Th 4 gives, if $\nabla f(x^k) \neq 0$ for all k ,

$$\lim_{k \to \infty} \|\nabla f(x^k)\| \cdot \cos \theta_k \cdot \min\{1, \|s^k\|\} = 0.$$

A descent direction p_{k} .

Thus to ensure global convergence of GLM, namely, $\|\nabla f(x^k)\| \longrightarrow 0$ as $k \to \infty$, it is not sufficient to have s^k be descent for each k; we need $\cos \theta_k \ge \delta > 0$ for all k, so that s^k is prevented from becoming orthogonal to the gradient as k increases. Linesearch methods:

Linesearch: how to choose the stepsize α^k , from any x^k and along any descent direction s^k .

How to choose a descent direction s^k? What are the important such choices of s^k?

- Steepest descent direction (next).
- Newton direction.

Steepest descent (SD) direction: set $s^k := -\nabla f(x^k)$, $k \ge 0$, in Generic Linesearch Method (GLM).

$$s^k \underline{descent} \text{ direction whenever } \nabla f(x^k) \neq 0:$$

$$\nabla f(x^k)^T s^k < 0 \iff \nabla f(x^k)^T (-\nabla f(x^k)) < 0 \iff -\|\nabla f(x^k)\|^2 < 0.$$

■ s^k steepest descent: unique global solution of minimize_{$s \in \mathbb{R}^n$} $f(x^k) + s^T \nabla f(x^k)$ subject to $||s|| = ||\nabla f(x^k)||$. Cauchy-Schwarz: $|s^T \nabla f(x^k)| \le ||s|| \cdot ||\nabla f(x^k)||, \forall s$, with equality iff s is proportional to $||\nabla f(x^k)||$.

Steepest descent methods

Method of steepest descent (SD): GLM with $s^k == SD$ direction; any linesearch.

Steepest Descent (SD) Method

Choose $\epsilon > 0$ and $x^0 \in \mathbb{R}^n$. While $\|\nabla f(x^k)\| > \epsilon$, REPEAT: compute $s^k = -\nabla f(x^k)$. compute a stepsize $\alpha^k > 0$ along s^k such that $f(x^k + \alpha^k s^k) < f(x^k);$ set $x^{k+1} := x^k + \alpha^k s^k$ and k := k + 1.

SD-bA :== SD method with bArmijo linesearches.

Global convergence of steepest descent methods

• $f \in \mathcal{C}^1(\mathbb{R}^n); \,
abla f$ is Lipschitz continuous (on \mathbb{R}^n) iff $\exists L > 0$, $\|
abla f(y) -
abla f(x)\| \leq L \|y - x\|, \quad \forall x, \, y \in \mathbb{R}^n.$

Theorem 5 Let $f \in C^1(\mathbb{R}^n)$ be bounded below on \mathbb{R}^n . Let ∇f be Lipschitz continuous. Apply the SD-e or the SD-bA method to minimizing f with $\epsilon := 0$. Then both variants of the SD method have the property: either

```
there exists l \ge 0 such that \nabla f(x^l) = 0
```

or

 $\|
abla f(x^k)\| o 0$ as $k o \infty$.

Proof for SD-bA. Let $s^k = -\nabla f(x^k)$ for all k in Th 4. \Box

SD methods have excellent global convergence properties (under weak assumptions).

SD methods are scale-dependent.

poorly scaled problem/variables \implies SD direction gives little progress.

Usually, SD methods converge very slowly to solution, asymptotically.

The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

$$f(x) = rac{1}{2}(ax_1^2 + x_2^2) = rac{1}{2}x^T \left(egin{array}{cc} a & 0 \ 0 & 1 \end{array}
ight)x, \quad x = (x_1 \ x_2)^T, \quad (\diamondsuit)$$

where a > 0. Note $x^* = (0 \ 0)^T$ unique global minimizer. $a \gg 1 \longrightarrow f$ poorly scaled (or poorly conditioned). apply SD-e to (\Diamond) starting at $x^0 := (1 \ a)^T$. Then[see Pb Sheet 2]

$$x^k = \left(rac{a-1}{a+1}
ight)^k \left(egin{array}{c} (-1)^k \ a \end{array}
ight), \quad k \geq 0.$$

 $\implies x^k \to 0 \text{ as } k \to \infty$, linearly with $\rho := |(a-1)/(a+1)|$ convergence factor.

 $\square a \gg 1 \implies \rho$ closer to $1 \implies$ SD-e converges very slowly.

The scale-dependence of steepest descent

Example of a well-scaled quadratic.

Linear transformation of variables:

$$y=\left(egin{array}{cc} a^{1/2} & 0 \ 0 & 1 \end{array}
ight)x.$$

let *f*(*y*) := *f*(*x*(*y*)), namely *f* in the new coordinates *y*.
⇒ *f*(*y*) = ½*y*^T*y* = ½(*y*₁² + *y*₂²).
→ *f* well-scaled. *y*^{*} = (0 0)^T unique global minimizer.

• apply SD-e to \overline{f} from any $y^0 \in \mathbb{R}^2$: $y^1 = (0 \ 0)^T = y^*$.

The scale-dependence of steepest descent

The effect of problem scaling on SD-e performance. Left figure: $a = 10^{0.6}$ (mildly poor scaling). Right figure: a = 1 ("perfect" scaling).

Local rate of convergence for steepest descent

Usually, SD methods converge very slowly to solution, asymptotically. theory: very slow conv. numerics: break-down (cumulation of round-off 0.5 and ill-conditioning).

$$f(x_1, x_2) = 10(x_2 - x_1^2)^2 + (x_1 - 1)^2.$$

SD-bA applied to the Rosenbrock function f.

Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution,

$$|f(x^{k+1}) - f(x^*)| \leq
ho |f(x^k) - f(x^*)|, \, orall k$$
 suff. large

BUT convergence factor ρ v. close to 1 usually!

Theorem 6 $f \in C^2$; x^* local minimizer of f with $\nabla^2 f(x^*)$ positive definite $\longrightarrow \lambda^*_{\max}$, λ^*_{\min} eigenvalues. Apply SD-e to min f. If $x^k \to x^*$ as $k \to \infty$, then $f(x^k)$ converges linearly to $f(x^*)$,

$$ho \leq \left(rac{\kappa(x^*)-1}{\kappa(x^*)+1}
ight)^2 :=
ho_{SD},$$

where $\kappa(x^*) = \lambda_{\max}^* / \lambda_{\min}^*$ condition number of $\nabla^2 f(x^*)$. • practice: $\rho = \rho_{SD}$; for Rosenbrock f: $\kappa(x^*) = 258.10$, $\rho_{SD} \approx 0.984$. • $\kappa(x^*) = 800$, $f(x^0) = 1$, $f(x^*) = 0$. SD-e gives $f(x^k) \approx 0.007$ after 1000 iterations!

Summary: steepest descent methods

- first-order method \longrightarrow inexpensive.
- global convergence under weak assumptions, but no second-order optimality guarantees for the generated solution.
- scale-dependent; too expensive, or impossible, to make a function well-scaled.
- when the objective is poorly scaled, very very slow convergence to a solution; hence, not used in general.
- useful sometimes: for example, for some convex problems with special structure that are very well conditioned (compressed sensing, etc).