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Global convergence of GLM (continued)

Theorem 4. Let f ∈ C1(Rn) be bounded below on R
n by flow.

Let ∇f Lipschitz continuous. Apply GLM with bArmijo
linesearch to minimizing f with ǫ := 0. Then
either

there exists l ≥ 0 such that ∇f(xl) = 0

or

lim
k→∞

min

{

|∇f(xk)T sk|

‖sk‖
, |∇f(xk)T sk|

}

= 0.

Proof of Theorem 4. Assume ∇f(xk) 6= 0 for all k so GLM
does not terminate finitely. Then Armijo condition (*) gives

f(xk) − f(xk+1) ≥ βαk(−∇f(xk))T sk for all k ≥ 0.
Summing this up from k = 0 to k = i, consecutive terms on
the left-hand side cancel to give

f(x0) − f(xi+1) ≥ β
∑i

k=0 α
k(−∇f(xk))T sk for all i ≥ 0.

As f is bounded below by flow, f(xi+1) ≥ flow for all i ≥ 0.
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Global convergence of GLM ...

Proof of Theorem 4. Thus we deduce from the above that
∞ > f(x0) − flow ≥ β

∑∞
k=0 α

k|∇f(xk))T sk|, (1)

where we also used that ∇f(xk)T sk < 0 so that
(−∇f(xk))T sk = |∇f(xk))T sk|. We deduce from the
convergence of the series in (1) that

lim
k−→∞

αk|∇f(xk))T sk| = 0. (2)

Let K1 = {k : α(0) ≥ ταk
max} and K2 = {k : α(0) < ταk

max}.
For all k ∈ K1, we have from Lemmas 2 & 3 that

αk|∇f(xk))T sk| ≥ (1−β)τ
L

·
(

|∇f(xk)T sk|
‖sk‖

)2

≥ 0

and so (2) implies limk→∞,k∈K1
|∇f(xk)T sk|/‖sk‖ = 0.

Lemma 3 gives that αk ≥ α(0) for all k ∈ K2 and so (2)
provides limk→∞,k∈K2

|∇f(xk)T sk| = 0. These two limits and
the property min{ak, bk} ≤ ak, bk, ∀k, give the required limit.�
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Global convergence of GLM ...

Interpretation of Theorem 4: Recall

cos θk = (−∇f(xk))T sk

‖∇f(xk)‖·‖sk‖
= |∇f(xk)T sk|

‖∇f(xk)‖·‖sk‖
.

Then Th 4 gives, if ∇f(xk) 6= 0 for all k,

lim
k→∞

‖∇f(xk)‖ · cos θk · min{1, ‖sk‖} = 0.

k

∆

–
k

f

p

A descent direction pk.

Thus to ensure global convergence of GLM, namely,
‖∇f(xk)‖ −→ 0 as k → ∞, it is not sufficient to have sk be
descent for each k; we need cos θk ≥ δ > 0 for all k, so that sk is
prevented from becoming orthogonal to the gradient as k increases.
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Summary and a look ahead

Linesearch methods:

Linesearch: how to choose the stepsize αk, from any xk

and along any descent direction sk.

How to choose a descent direction sk? What are the
important such choices of sk?

Steepest descent direction (next).
Newton direction.
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Steepest descent method

Steepest descent (SD) direction: set sk := −∇f(xk), k ≥ 0,
in Generic Linesearch Method (GLM).

sk descent direction whenever ∇f(xk) 6= 0:
∇f(xk)T sk < 0 ⇐⇒ ∇f(xk)T (−∇f(xk)) < 0 ⇐⇒ −‖∇f(xk)‖2 < 0.

sk steepest descent: unique global solution of

minimizes∈Rnf(xk) + sT∇f(xk) subject to ‖s‖ = ‖∇f(xk)‖.

Cauchy-Schwarz: |sT∇f(xk)| ≤ ‖s‖ · ‖∇f(xk)‖, ∀s,
with equality iff s is proportional to ‖∇f(xk)‖.
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Steepest descent methods

Method of steepest descent (SD): GLM with sk == SD

direction; any linesearch.

Steepest Descent (SD) Method

Choose ǫ > 0 and x0 ∈ R
n. While ‖∇f(xk)‖ > ǫ, REPEAT:

compute sk = −∇f(xk).

compute a stepsize αk > 0 along sk such that

f(xk + αksk) < f(xk);

set xk+1 := xk + αksk and k := k + 1. �

SD-e :== SD method with exact linesearches;
SD-bA :== SD method with bArmijo linesearches.

Lecture 3: Linesearch methods (continued). Steepest descent methods – p. 7/15



Global convergence of steepest descent methods

• f ∈ C1(Rn); ∇f is Lipschitz continuous (on R
n) iff ∃L > 0,

‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖, ∀x, y ∈ R
n.

Theorem 5 Let f ∈ C1(Rn) be bounded below on R
n.

Let ∇f be Lipschitz continuous. Apply the SD-e or the SD-bA
method to minimizing f with ǫ := 0.
Then both variants of the SD method have the property:
either

there exists l ≥ 0 such that ∇f(xl) = 0

or
‖∇f(xk)‖ → 0 as k → ∞.

Proof for SD-bA. Let sk = −∇f(xk) for all k in Th 4. �

SD methods have excellent global convergence properties
(under weak assumptions).
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Some disadvatanges of steepest descent methods

SD methods are scale-dependent.

poorly scaled problem/variables =⇒ SD direction gives little progress.

Usually, SD methods converge very slowly to solution,
asymptotically.
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The scale-dependence of steepest descent

Example of a poorly scaled quadratic.

f(x) =
1

2
(ax2

1+x2
2) =

1

2
xT

(

a 0

0 1

)

x, x = (x1 x2)
T , (♦)

where a > 0. Note x∗ = (0 0)T unique global minimizer.
a ≫ 1 −→ f poorly scaled (or poorly conditioned).
apply SD-e to (♦) starting at x0 := (1 a)T . Then[see Pb Sheet 2]

xk =

(

a − 1

a + 1

)k
(

(−1)k

a

)

, k ≥ 0.

=⇒ xk → 0 as k → ∞, linearly with ρ := |(a − 1)/(a + 1)|

convergence factor.
a ≫ 1 =⇒ ρ closer to 1 =⇒ SD-e converges very slowly.
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The scale-dependence of steepest descent

Example of a well-scaled quadratic.

Linear transformation of variables:

y =

(

a1/2 0

0 1

)

x.

let f(y) := f(x(y)), namely f in the new coordinates y.

=⇒ f(y) = 1
2
yTy = 1

2
(y2

1 + y2
2).

−→ f well-scaled.

y∗ = (0 0)T unique global minimizer.

apply SD-e to f from any y0 ∈ R
2: y1 = (0 0)T = y∗.
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The scale-dependence of steepest descent
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The effect of problem scaling on SD-e performance.
Left figure: a = 100.6 (mildly poor scaling).
Right figure: a = 1 (“perfect” scaling).
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Local rate of convergence for steepest descent

Usually, SD methods converge very slowly to solution,
asymptotically.

theory: very slow conv.

numerics: break-down
(cumulation of round-off
and ill-conditioning).

f(x1, x2) = 10(x2 − x2

1
)2

+ (x1 − 1)2.
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SD-bA applied to the Rosenbrock

function f .
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Local rate of convergence for steepest descent

Asymptotically, SD converges linearly to a solution,
|f(xk+1) − f(x∗)| ≤ ρ|f(xk) − f(x∗)|, ∀k suff. large

BUT convergence factor ρ v. close to 1 usually!

Theorem 6 f ∈ C2; x∗ local minimizer of f with ∇2f(x∗)

positive definite −→ λ∗
max, λ∗

min eigenvalues.
Apply SD-e to min f . If xk → x∗ as k → ∞, then f(xk)

converges linearly to f(x∗),

ρ ≤
(

κ(x∗)−1
κ(x∗)+1

)2
:= ρSD,

where κ(x∗) = λ∗
max/λ

∗
min condition number of ∇2f(x∗).

• practice: ρ = ρSD;
for Rosenbrock f : κ(x∗) = 258.10, ρSD ≈ 0.984.
• κ(x∗) = 800, f(x0) = 1, f(x∗) = 0. SD-e gives
f(xk) ≈ 0.007 after 1000 iterations!
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Summary: steepest descent methods

first-order method −→ inexpensive.

global convergence under weak assumptions, but no
second-order optimality guarantees for the generated
solution.

scale-dependent; too expensive, or impossible, to make a
function well-scaled.

when the objective is poorly scaled, very very slow
convergence to a solution; hence, not used in general.

useful sometimes: for example, for some convex
problems with special structure that are very well
conditioned (compressed sensing, etc).
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