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Linear and nonlinear least-squares problems

m a way to solve overdetermined (linear and nonlinear)
systems of equations:

r:R™ - R™ withm > n; r(x) =0 or r(x) = 0.

U

mingezn £(2) = 3 Y7L, rj(@))? = Ylir(@)|?. (LN LS)

— unconstrained optimization problems with special
structure.

m often, computationally cheaper to solve if structure is
exploited:

— “simplify” damped Newton’s method to exploit this
structure.

B many applications: data fitting, data assimilation for
weather forecasting, climate modelling, etc.
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Data fitting application

Timest; — y;, j =1, m, measurements.

Model: ®(x,t), continuous In t; parameters x € R", n < m.
Find z: ®(z,t;) “close t0” y;, j = 1, m;

Choice of model: ®(z,t) = =1 + =2t + e~ *3t, where

r = (x1, T2, T3) € R3.

D(x,1)

Optimal model: ®(x*,t).

1.8
t

®m In (NLS), let r;(x) := ®(=,t;) — y;, 7 = 1, m: residuals.
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The Linear Least-Squares (LLS) problem

Br(x):=Jrx+r, Ve eR", JeR™*™ r e R™, m > n.
mingepn f(z) := z||Jx +rl|>.  (LLS)
B f convex quadratic; (global) minimizer x* of f == solution
of linear system (normal equations)
JU(Jx*+7r) =0 < JlJz* = —JTr.
Geometrical interpretation:

mr(x) =Ax —b.
LLS: find orthogonal

projection of b onto the
subspace/plane deter-
mined by the columns
of A.

m computing =*: Cholesky factorization of JT'J; QR or SVD of J.

Lecture 6: Linear and nonlinear least-squares problems; the Gauss-Newton method — p. 4/10



A simple LLS example

Fit a line to the data (¢;, y;) € {(—1,3),(0,2),(1,0),(2,4)}.

o for some x = (zy z2)! € R?, ®(x,t) := x1 + xot, t € R,
defines a line.

e determine = = (1 x2)T as solution of (LLS)

mmz | (@, t:) — il

xrER2

r1 —I2 = 3

I = 2

b(x,t;) =0,1=1,4 <& « n 0
Irq o =

L I —|—2$2 = 4
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A simple LLS example ...

Let J matrix of system; =* LLS solution iff J7Jz* = JTy.

4 2 CUI 9

%k
s 59

& ¥ = (2.2,0.1) and ®(z*,t) = 2.2 + 0.1¢.
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Nonlinear Least-Squares (NLS)

Hr:R"” — R™ with m > n; r smooth.

mingegn f(x) := 3 > 0, [rj(®)]? = 3llr(x)[>.  (NLS)
m r(x*) = 0: zero-residual pb.; »(x*) # 0. nonzero-residual pb.
BVf(x)=J)!r(z), where J(x) Jacobian of r at z.

B V2f(x) = J(x) T (x)+> 70 ri(x) Vir(x).

m (Damped and modified) Newton’s method for minimization
may be applied to f: V2f(x)sk = -V f(x).

mrj(z*)=0 or V?r;j(z*)smal — r;(x)V?r;(xz) small
when z close to z* = V2f(z) ~ J(z)TJ(z) := V2f(z).

m J(x)?J(x) positive semidefinite;
if J(x) full column rank = J(x)TJ(x) positive definite.
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Gauss-Newton method for nonlinear least-squares

m GN direction:
V2f(zk)sk = —V f(zF) < J(z*)TJ(z*)s* = —J(z*)Tr(zk),
and so s* solves the (LLS):
mingepn 1|7 (z%)s 4 r(¥)||2.
—— f approXx. by convex quadratic model for each k.

m s* descent provided J(«*) full column rank!

Gauss-Newton method for nonlinear least-squares

Choose € > 0 and z® € R™.

Wil e ||[VF(z®)|| > e, REPEAT:

m solve the linear system V2f(z*)sk = —Vf(z).
B set ¢t =2k + aksk, with aFf ¢ (0,1]; k:=k+1.
END.
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Convergence properties of Gauss-Newton method

B Vf(x) =0maynotimply »(x) =0

m (global convergence) J(z*) uniformly full-rank for all =* (etc.) =—
V£ (@R = [1J(x®)r(®)|| = 0, k — oo.

m (local convergence) if r(z*) = 0 and J(x*) full-rank (etc.) —-
¥ — x* quadratically.

Gauss-Newton vs. Newton method:

B computational cost per iteration: N > GN.
m N direction may be ascent.
m only linear rate for GN when r»(x*) # 0.

m N & GN mthds unreliable without a linesearch (or other
safeguards). Use bArmijo linesearch for example.
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Gauss-Newton vs. Newton: an example

Br:R—>R%r(z):=(x+1 01z2+zx—1)T

mr(z*) = (1, —1)T £ 0 — nonzero residuals problem: only
linear convergence asymptotically for GN.

1 2 3 4 5 6
N |1.0|0.14|0.003|1.5-107% | 4.3-10"13 | 3.1-1026
GN | 1.0| 0.13 | 0.014 | 0.0014 0.00014 0.000014
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