Lecture 6: Linear and nonlinear least-squares problems; the Gauss-Newton method

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Linear and nonlinear least-squares problems

a way to solve overdetermined (linear and nonlinear) systems of equations:

$$r: \mathbb{R}^n
ightarrow \mathbb{R}^m$$
 with $m \geq n$; $r(x) = 0$ or $r(x) pprox 0$.

 $\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{2} \sum_{j=1}^m [r_j(x)]^2 = \frac{1}{2} \|r(x)\|^2. \quad (L/N LS)$

 \implies unconstrained optimization problems with special structure.

often, computationally cheaper to solve if structure is exploited:

 \longrightarrow "simplify" damped Newton's method to exploit this structure.

many applications: data fitting, data assimilation for weather forecasting, climate modelling, etc.

Data fitting application

Times $t_j \longrightarrow y_j$, j = 1, m, measurements. Model: $\Phi(x, t)$, continuous in t; parameters $x \in \mathbb{R}^n$, n < m. Find x: $\Phi(x, t_i)$ "close to" $y_j, j = \overline{1, m}$; Choice of model: $\Phi(x,t) = x_1 + x_2t + e^{-x_3t}$, where $x=(x_1,x_2,x_3)\in \mathbb{R}^3$. $\Phi(x,t)$ $\min_{x \in \mathbb{R}^3} rac{1}{2} \sum_{i=1}^{\infty} (\Phi(x,t_j) - y_j)^2.$ 3.6 $\longrightarrow x^*$. Optimal model: $\Phi(x^*, t)$. 2.8 2.6L 1.2 1.4 1.6 0.4 0.6 0.8 1.8 0.2 In (NLS), let $r_j(x) := \Phi(x, t_j) - y_j$, $j = \overline{1, m}$: residuals.

The Linear Least-Squares (LLS) problem

■ f convex quadratic; (global) minimizer x^* of f == solution of linear system (normal equations)

$$J^T(Jx^*+r)=0 \iff J^TJx^*=-J^Tr.$$

Geometrical interpretation:

■ r(x) = Ax - b. LLS: find orthogonal projection of *b* onto the subspace/plane determined by the columns of *A*.

• computing x^* : Cholesky factorization of $J^T J$; QR or SVD of J.

A simple LLS example

Fit a line to the data $(t_i, y_i) \in \{(-1, 3), (0, 2), (1, 0), (2, 4)\}$.

• for some $x = (x_1 \ x_2)^T \in \mathbb{R}^2$, $\Phi(x,t) := x_1 + x_2 t$, $t \in \mathbb{R}$, defines a line.

• determine $x = (x_1 \ x_2)^T$ as solution of (LLS)

$$\min_{x\in \mathbb{R}^2} \sum_{i=1}^4 \|\Phi(x,t_i)-y_i\|^2.$$

 $\Phi(x,t_i) - y_i = 0, \ i = \overline{1,4} \quad \Leftrightarrow \quad \begin{cases} x_1 & -x_2 & = & 3 \\ x_1 & & = & 2 \\ x_1 & +x_2 & = & 0 \\ x_1 & +2x_2 & = & 4 \end{cases}$

$$x_1 + 2x_2 = 4.$$

A simple LLS example ...

Let J matrix of system; x^* LLS solution iff $J^T J x^* = J^T y$.

$$\left(egin{array}{cc} 4 & 2 \ 2 & 6 \end{array}
ight) \left(egin{array}{c} x_1^* \ x_2^* \end{array}
ight) = \left(egin{array}{c} 9 \ 5 \end{array}
ight),$$

 $\Leftrightarrow x^* = (2.2, 0.1) \text{ and } \Phi(x^*, t) = 2.2 + 0.1t.$

Nonlinear Least-Squares (NLS)

 r: ℝⁿ → ℝ^m with m ≥ n; r smooth. min_{x∈ℝⁿ} f(x) := ¹/₂ ∑_{j=1}^m [r_j(x)]² = ¹/₂ ||r(x)||². (NLS)
 r(x*) = 0: zero-residual pb.; r(x*) ≠ 0: nonzero-residual pb.
 ∇f(x) = J(x)^Tr(x), where J(x) Jacobian of r at x.
 ∇²f(x) = J(x)^TJ(x)+∑_{j=1}^m r_j(x)∇²r_j(x).

Output (Damped and modified) Newton's method for minimization may be applied to f: $\nabla^2 f(x) s^k = -\nabla f(x).$

• $r_j(x^*) \approx 0$ or $\nabla^2 r_j(x^*)$ small $\implies r_j(x) \nabla^2 r_j(x)$ small when x close to $x^* \implies \nabla^2 f(x) \approx J(x)^T J(x) := \overline{\nabla^2 f(x)}$.

■ $J(x)^T J(x)$ positive semidefinite; if J(x) full column rank $\Rightarrow J(x)^T J(x)$ positive definite.

Gauss-Newton method for nonlinear least-squares

GN direction:

$$\widetilde{
abla^2}f(x^k)s^k = -
abla f(x^k) \Longleftrightarrow J(x^k)^T J(x^k)s^k = -J(x^k)^T r(x^k),$$

and so s^k solves the (LLS):

$$\min_{s\in\mathbb{R}^n}\frac{1}{2}\|J(x^k)s+r(x^k)\|^2.$$

- \longrightarrow f approx. by convex quadratic model for each k.
- \blacksquare s^k descent provided $J(x^k)$ full column rank!

Gauss-Newton method for nonlinear least-squares:

Choose $\epsilon > 0$ and $x^0 \in \mathbb{R}^n$. While $\|\nabla f(x^k)\| > \epsilon$, REPEAT: solve the linear system $\widetilde{\nabla^2 f}(x^k)s^k = -\nabla f(x^k)$. set $x^{k+1} = x^k + \alpha^k s^k$, with $\alpha^k \in (0, 1]$; k := k + 1. END.

Convergence properties of Gauss-Newton method

 $\Box \nabla f(x) = 0 \text{ may not imply } r(x) = 0$

□ (global convergence) $J(x^k)$ uniformly full-rank for all x^k (etc.) \implies $\|\nabla f(x^k)\| = \|J(x^k)^T r(x^k)\| \to 0, k \to \infty.$

■ (local convergence) if $r(x^*) = 0$ and $J(x^*)$ full-rank (etc.) $\implies x^k \rightarrow x^*$ quadratically.

Gauss-Newton vs. Newton method:

- computational cost per iteration: N > GN.
- N direction may be ascent.
- only linear rate for GN when $r(x^*) \neq 0$.

N & GN mthds unreliable without a linesearch (or other safeguards). Use bArmijo linesearch for example.

Gauss-Newton vs. Newton: an example

 $\square r: \mathbb{R}
ightarrow \mathbb{R}^2; \ r(x):=(x+1 \quad 0.1x^2+x-1)^T$

■ $r(x^*) = (1, -1)^T \neq 0 \longrightarrow$ nonzero residuals problem: only linear convergence asymptotically for GN.

	1	2	3	4	5	6
Ν	1.0	0.14	0.003	$1.5\cdot10^{-6}$	$4.3 \cdot 10^{-13}$	$3.1\cdot10^{-26}$
GN	1.0	0.13	0.014	0.0014	0.00014	0.000014