Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Penalty methods for nonlinear programming

$$\min_{x\in\mathbb{R}^n} \quad f(x) \quad ext{subject to} \quad c(x)=0, \qquad \qquad (ext{eCP})$$

where $f : \mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \dots, c_m) : \mathbb{R}^n \to \mathbb{R}^m$ smooth.

attempt to find local solutions (at least KKT points).

- constrained optimization —> conflict of requirements: objective minimization & feasibility of the solution.
 - easier to generate feasible iterates for linear equality and general inequality constrained problems;
 - very hard, even impossible, in general, when general equality constraints are present.

 \implies form a single, parametrized and unconstrained objective, whose minimizers approach initial problem solutions as parameters vary

$$\min_{x\in \mathbb{R}^n} \quad f(x) \quad ext{subject to} \quad c(x) = 0. \tag{eCP}$$

The quadratic penalty function:

$$\min_{x\in\mathbb{R}^n} \quad \Phi_\sigma(x) = f(x) + rac{1}{2\sigma} \|c(x)\|^2, \qquad \quad (\mathsf{eCP}_\sigma)$$

where $\sigma > 0$ penalty parameter.

 \bullet σ : penalty on infeasibility;

• $\sigma \longrightarrow 0$: 'forces' constraint to be satisfied and achieve optimality for f.

• Φ_{σ} may have other stationary points that are not solutions for (eCP); eg., when c(x) = 0 is inconsistent.

Contours of the penalty function Φ_{σ} - an example

The quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$

Contours of the penalty function Φ_{σ} - an example...

The quadratic penalty function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$

A quadratic penalty method

Given $\sigma^0>0$, let k=0. Until "convergence" do:

Choose
$$0 < \sigma^{k+1} < \sigma^k$$
 .

Starting from x_0^k (possibly, $x_0^k := x^k$), use an unconstrained minimization algorithm to find an "approximate" minimizer x^{k+1} of $\Phi_{\sigma^{k+1}}$. Let k := k+1.

Must have $\sigma^k \to 0, \, k \to 0. \; \sigma^{k+1} := 0.1 \sigma^k, \, \sigma^{k+1} := (\sigma^k)^2$, etc.

Algorithms for minimizing Φ_{σ} :

• Linesearch, trust-region methods.

• σ small: Φ_{σ} very steep in the direction of constraints' gradients, and so rapid change in Φ_{σ} for steps in such directions; implications for "shape" of trust region.

A convergence result for the penalty method

<u>Theorem 21.</u> (Global convergence of penalty method) Apply the basic quadratic penalty method to the (eCP). Assume that $f, c \in C^1, y_i^k = -c_i(x^k)/\sigma^k, i = \overline{1, m}$, and

 $\|
abla \Phi_{\sigma^k}(x^k)\| \leq \epsilon^k$, where $\epsilon^k o 0, k o \infty$,

and also $\sigma^k \to 0$, as $k \to \infty$. Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i = \overline{1, m}$, are linearly independent.

Then x^* is a KKT point of (eCP) and $y^k \rightarrow y^*$, where y^* is the vector of Lagrange multipliers of (eCP) constraints.

■ $\nabla c_i(x^*)$, $i = \overline{1, m}$, lin. indep. \Leftrightarrow the Jacobian matrix $J(x^*)$ of the constraints is full row rank and so $m \leq n$.

■ $J(x^*)$ not full rank, then x^* (locally) minimizes the infeasibility ||c(x)||. [let $y^k \to \infty$ in (◊) on the next slide]

A convergence result for the penalty method

Proof of Theorem 21. $J(x^*)$ full rank \implies $\exists J(x^*)^+ = (J(x^*)J(x^*)^T)^{-1}J(x^*)$ pseudo-inverse. As $x^k \to x^*$ and J cont. $\Rightarrow \exists J(x^k)^+$ bounded above and cont. for all suff. large k. Let $y^k = -c(x^k)/\sigma^k$ and $y^* = J(x^*)^+ \nabla f(x^*)$. $\|\nabla \Phi_{\sigma^k}(x^k)\| = \|\nabla f(x^k) - J(x^k)^T y^k\| < \epsilon_k \quad (\diamond)$ $\|J(x^k)^+ \nabla f(x^k) - y^k\| = \|J(x^k)^+ (\nabla f(x^k) - J(x^k)^T y^k)\| < 0$ $\|J(x^k)^+\| \cdot \|
abla f(x^k) - J(x^k)^T y^k\| < 0$ $\{\|J(x^k)^+ - J(x^*)^+\| + \|J(x^*)^+\|\} \epsilon_k \le 2\|J(x^*)^+\|\epsilon_k \quad (\bullet)$ where in the last < we used $x^k \rightarrow x^*$ and J^+ continuous. Triangle inequality (add and subtr $J^+\nabla f$) and def of y^* give $\|y^{k} - y^{*}\| \le \|J(x^{k})^{+} \nabla f(x^{k}) - J(x^{*})^{+} \nabla f(x^{*})\| + \|J(x^{k})^{+} \nabla f(x^{k}) - y^{k}\|$ Thus $y^k \to y^*$ since $x^k \to x^*$, J^+ and ∇f cont., (•) and $\epsilon_k \to 0$. Using all these again in (\Diamond) as $k \to \infty$: $\nabla f(x^*) - J(x^*)^T y^* = 0$. As $c(x^k) = -\sigma^k y^k, \sigma^k \to 0, y^k \to y^* \Rightarrow c(x^*) = 0$. Thus x^* KKT.

Derivatives of the penalty function

Let $y(\sigma) := -c(x)/\sigma$: estimates of Lagrange multipliers. \blacksquare Let L be the Lagrangian function of (eCP), $L(x, y) := f(x) - y^T c(x).$ • $\Phi_{\sigma}(x) = f(x) + \frac{1}{2\sigma} \|c(x)\|^2$. Then $abla \Phi_{\sigma}(x) =
abla f(x) + rac{1}{\sigma} J(x)^T c(x) =
abla_x L(x, y(\sigma)),$ where J(x) Jacobian $m \times n$ matrix of constraints c(x). $\nabla^2 \Phi_{\sigma}(x) = \nabla^2 f(x) + \frac{1}{\sigma} \sum_{i=1}^m c_i(x) \nabla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x)$ $= \nabla_{xx}^2 L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x).$

• $\sigma \longrightarrow 0$: generally, $c_i(x) \rightarrow 0$ at the same rate with σ for all *i*. Thus usually, $\nabla^2_{xx} L(x, y(\sigma))$ well-behaved.

 $\ \ \, \sigma \rightarrow 0 \ \ \, J(x)^T J(x)/\sigma \rightarrow J(x^*)^T J(x^*)/0 = \infty.$

Ill-conditioning of the penalty's Hessian ...

'Fact' [cf. Th 5.2, Gould ref.] $\implies m$ eigenvalues of $\nabla^2 \Phi_{\sigma^k}(x^k)$ are $\mathcal{O}(1/\sigma^k)$ and hence, tend to infinity as $k \to \infty$ (ie, $\sigma^k \to 0$); remaining n - m are $\mathcal{O}(1)$ in the limit.

• Hence, the condition number of $abla^2 \Phi_{\sigma^k}(x^k)$ is $\mathcal{O}(1/\sigma^k)$

 \implies it blows up as $k \rightarrow \infty$.

 \implies worried that we may not be able to compute changes to x^k accurately. Namely, whether using linesearch or trust-region methods, asymptotically, we want to minimize $\Phi_{\sigma^{k+1}}(x)$ by taking Newton steps, i.e., solve the system

 $abla^2 \Phi_{\sigma}(x) dx =
abla \Phi_{\sigma}(x), \qquad (*)$

for dx from some current $x = x^{k,i}$ and $\sigma = \sigma^{k+1}$.

Despite ill-conditioning present, we can still solve for dx accurately!

Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to $\left(\nabla_{xx}^2 L(x, y(\sigma)) + \frac{1}{\sigma} J(x)^T J(x)\right) dx = -\left(\nabla f(x) + \frac{1}{\sigma} J(x)^T c(x)\right),$ where $y(\sigma) = -c(x)/\sigma$. Define auxiliary variable w

$$w = rac{1}{\sigma} \left(J(x) dx + c(x)
ight).$$

Then the Newton system (*) can be re-written as

$$egin{pmatrix} & \nabla^2 L(x,y(\sigma)) & J(x)^{ op} \ J(x) & -\sigma I \end{pmatrix} egin{pmatrix} & dx \ w \end{pmatrix} = - egin{pmatrix} &
abla f(x) \ c(x) \end{pmatrix}$$

This system is essentially independent of σ for small $\sigma \implies$ cannot suffer from ill-conditioning due to $\sigma \to 0$. Still need to be careful about minimizing Φ_{σ} for small σ . Eg, when using TR methods, use $||dx||_B \leq \Delta$ for TR constraint. *B* takes into account ill-conditioned terms of Hessian so as to encourage equal model decrease in all directions.

$$\min_{x\in\mathbb{R}^n} f(x)$$
 subject to $c(x)=0.$ (eCP)
P) satisfies the KKT conditions

(dual feasibility) $\nabla f(x) = J(x)^T y$ and (primal feasibility) c(x) = 0.

Consider the perturbed problem

(eC

$$\left\{ \begin{array}{l} \nabla f(x) - J(x)^T y = 0 \\ c(x) + \sigma y = 0 \end{array} \right. (eCP_p)$$

Find roots of nonlinear system (eCP_p) as $\sigma \longrightarrow 0$ ($\sigma > 0$); use Newton's method for root finding.

Perturbed optimality conditions...

Newton's method for system (eCP_p) computes change (dx, dy) to (x, y) from

$$egin{pmatrix} \nabla^2 \mathcal{L}(x,y) & -J(x)^{ op} \ J(x) & \sigma I \end{pmatrix} egin{pmatrix} dx \ dy \end{pmatrix} = - \left(egin{array}{c}
abla f(x) - J(x)^{ op} y \ c(x) + \sigma y \end{pmatrix}
ight)$$

Eliminating dy, gives

$$\left(
abla_{xx}^2 L(x,y) + rac{1}{\sigma} J(x)^T J(x)
ight) dx = - \left(
abla f(x) + rac{1}{\sigma} J(x)^T c(x)
ight)$$

 \implies 'same' as Newton for quadratic penalty ! what's different?

Perturbed optimality conditions...

Primal:

$$\left(
abla_{xx}^2 L(x,y(\sigma)) + rac{1}{\sigma} J(x)^T J(x)
ight) dx^p = - \left(
abla f(x) + rac{1}{\sigma} J(x)^T c(x)
ight)$$

where $y(\sigma) = -c(x)/\sigma$.

Primal-dual:

$$\left(
abla_{xx}^2 L(x,y) + rac{1}{\sigma} J(x)^T J(x)
ight) dx^{pd} = - \left(
abla f(x) + rac{1}{\sigma} J(x)^T c(x)
ight)$$

The difference is in freedom to choose y in $\nabla^2 L(x, y)$ in primal-dual methods - it makes a big difference computationally.

Consider the general (CP) problem

 $ext{minimize}_{x\in\mathbb{R}^n}$ f(x) subject to $c_E(x)=0,$ $c_I(x)\geq 0.$ (CP)

Exact penalty function: $\Phi(x, \sigma)$ is exact if there is $\sigma_* > 0$ such that if $\sigma < \sigma_*$, any local solution of (CP) is a local minimizer of $\Phi(x, \sigma)$. (Quadratic penalty is inexact.) Examples:

• l_2 -penalty function: $\Phi(x, \sigma) = f(x) + \frac{1}{\sigma} \|c_E(x)\|$

I₁-penalty function: let
$$z^- = \min\{z, 0\}$$
,
$$\Phi(x, \sigma) = f(x) + \frac{1}{\sigma} \sum_{i \in E} |c_i(x)| + \frac{1}{\sigma} \sum_{i \in I} [c_i(x)]^-.$$

Extension of quadratic penalty to (CP): $\Phi(x,\sigma) = f(x) + \frac{1}{2\sigma} ||c_E(x)||^2 + \frac{1}{2\sigma} \sum_{i \in I} ([c_i(x)]^{-})^2$ (may no longer be suff. smooth; it is inexact)

Augmented Lagrangian methods for nonlinear programming

$$\min_{x\in\mathbb{R}^n} \quad f(x) \quad ext{subject to} \quad c(x) = 0, \qquad \qquad (eCP)$$

where $f : \mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \dots, c_m) : \mathbb{R}^n \to \mathbb{R}^m$ smooth.

Another example of merit function and method for (eCP): augmented Lagragian function

$$\Phi(x, u, \sigma) = f(x) - u^T c(x) + \frac{1}{2\sigma} \|c(x)\|^2$$

where $u \in \mathbb{R}^m$ and $\sigma > 0$ are auxiliary parameters.

Two interpretations:

shifted quadratic penalty function

convexification of the Lagrangian function

Aim: adjust u and σ to encourage convergence.

Derivatives of the augmented Lagrangian function

Let J(x) Jacobian of constraints $c(x) = (c_1(x), \ldots, c_m(x))$. $\nabla_x \Phi(x, u, \sigma) = \nabla f(x) - J(x)^T u + \frac{1}{\sigma} J(x)^T c(x)$ \implies $\nabla_x \Phi(x, u, \sigma) = \nabla f(x) - J(x)^T y(x) = \nabla_x \mathcal{L}(x, y(x))$ where $y(x) = u - \frac{c(x)}{-}$ Lagrange multiplier estimates $\nabla^2 \Phi(x, u, \sigma) = \nabla^2 f(x) - \sum_{i=1}^m u_i \nabla^2 c_i(x) +$ $rac{1}{\sigma}\sum_{i=1}^m c_i(x)
abla^2 c_i(x) + rac{1}{\sigma} J(x)^T J(x)$ $abla^2 \Phi(x, u, \sigma) =
abla^2 f(x) - \sum_{i=1}^m y_i \nabla^2 c_i(x) + \frac{1}{\sigma} J(x)^T J(x)$ $\Longrightarrow \nabla^2 \Phi(x, u, \sigma) = \nabla^2 \mathcal{L}(x, y(x)) + \frac{1}{\sigma} J(x)^T J(x)$ Lagrangian: $\mathcal{L}(x, y) = f(x) - y^T c(x)$

A convergence result for the augmented Lagrangian

<u>Theorem 22.</u> (Global convergence of augmented Lagrangian) Assume that $f, c \in C^1$ in (eCP) and let

$$y^k = u^k - rac{c(x^k)}{\sigma^k}$$
 ,

for given $u^k \in \mathbb{R}^m$, and assume that

 $\|
abla \Phi(x^k, u^k, \sigma^k)\| \leq \epsilon^k, ext{ where } \epsilon^k o 0, k o \infty.$

Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i = \overline{1, m}$, are linearly independent. Then $y^k \longrightarrow y^*$ as $k \longrightarrow \infty$ with y^* satisfying $\nabla f(x^*) - J(x^*)^T y^* = 0$.

If additionally, either $\sigma^k \to 0$ for bounded u^k or $u^k \to y^*$ for bounded σ^k then x^* is a KKT point of (eCP) with associated Lagrange multipliers y^* .

A convergence result for the augmented Lagrangian

<u>Proof of Theorem 22.</u> The first part of Th 22, namely, convergence of y^k to $y^* = J(x^*)^+ \nabla f(x^*)$ follows exactly as in the proof of Theorem 21 (penalty method convergence). (Note that the assumption $\sigma^k \to 0$ is not needed for this part of the proof of Th 21.)

It remains to show that under the additional assumptions on u^k and σ^k , x^* is feasible for the constraints. To see this, use the definition of y^k to deduce $c(x^k) = \sigma^k(u^k - y^k)$ and so

$$\|c(x^k)\| = \sigma^k \|u^k - y^k\| \le \sigma^k \|y^k - y^*\| + \sigma^k \|u^k - y^*\|$$

Thus $c(x^k) \longrightarrow 0$ as $k \to \infty$ due to $y^k \to y^*$ (cf. first part of theorem) and the additional assumptions on u^k and σ^k . As $x^k \to x^*$ and c is continuous, we deduce that $c(x^*) = 0$.

Note that Augmented Lagrangian may converge to KKT points without $\sigma^k \rightarrow 0$, which limits the ill-conditioning.

Contours of the augmented Lagrangian - an example

The augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ for fixed $\sigma = 1$

Contours of the augmented Lagrangian - an example...

The augmented Lagrangian function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 = 1$ for fixed $\sigma = 1$

Augmented Lagrangian methods

Th 22 \Longrightarrow convergence guaranteed if u^k fixed and $\sigma^k \longrightarrow 0$ [similar to quadratic penalty methods] $\Longrightarrow y^k \longrightarrow y^*$ and $c(x^k) \longrightarrow 0$

■ check if
$$||c(x^k)|| \le \eta^k$$
 where $\eta^k \longrightarrow 0$
■ if so, set $u^{k+1} = y^k$ and $\sigma^{k+1} = \sigma^k$
[recall expression of y^k in Th 22]
■ if not, set $u^{k+1} = u^k$ and $\sigma^{k+1} \le \tau \sigma^k$ for some $\tau \in (0, 1)$

reasonable: $\eta^k = (\sigma^k)^{0.1+0.9j}$ where *j* iterations since σ^k last changed

Under such rules, can ensure that σ^k is eventually unchanged under modest assumptions, and (fast) linear convergence.

Need also to ensure that σ^k is sufficiently large that the Hessian $\nabla^2 \Phi(x^k, u^k, \sigma^k)$ is positive (semi-)definite.

A basic augmented Lagrangian method

Given $\sigma^0 > 0$ and u^0 , let k = 0. Until "convergence" do:

Set
$$\eta^k$$
 and ϵ^{k+1} .
If $\|c(x^k)\| \leq \eta^k$, set $u^{k+1} = y^k$ and $\sigma^{k+1} = \sigma^k$.
Otherwise, set $u^{k+1} = u^k$ and $\sigma^{k+1} \leq \tau \sigma^k$.
Starting from x_0^k (possibly, $x_0^k := x^k$), use an
unconstrained minimization algorithm to find an
"approximate" minimizer x^{k+1} of $\Phi(\cdot, u^{k+1}, \sigma^{k+1})$
for which $\|\nabla_x \Phi(x^{k+1}, u^{k+1}, \sigma^{k+1})\| \leq \epsilon^{k+1}$.
Let $k := k + 1$. \diamondsuit

• Often choose $\tau = \min(0.1, \sqrt{\sigma^k})$

Reasonable: $\epsilon^k = (\sigma^k)^{j+1}$, where j iterations since σ^k last changed