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Penalty methods for nonlinear
programming
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Nonlinear equality-constrained problems

min f(x) subjectto c(x) =0, (eCP)
xER™
where f : R™ - R, ¢ = (¢1,...,Cm) : R — R™ smooth.

m attempt to find local solutions (at least KKT points).

m constrained optimization — conflict of requirements:
objective minimization & feasibility of the solution.

B easier to generate feasible iterates for linear equality
and general inequality constrained problems;

m very hard, even impossible, in general, when general
equality constraints are present.

— form a single, parametrized and unconstrained objective,
whose minimizers approach initial problem solutions as
parameters vary
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A penalty function for (eCP)

rrel]iR% f(x) subjectto c(x) = 0. (eCP)

The quadratic penalty function:

: . 1 2
min P,(x) = f(x) + %HC(%’)H ; (eCPs)

where o > 0 penalty parameter.

m o penalty on infeasibility;
B o — 0: forces’ constraint to be satisfied and achieve
optimality for f.

B &, may have other stationary points that are not solutions
for (eCP); eg., when ¢(x) = 0 is inconsistent.
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Contours of the penalty function ¢, - an example
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Contours of the penalty function ¢, - an example...
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A guadratic penalty method

Given 62 >0, let k=0. Until “convergence” do:

B Choose 0 < oktl <« ok,

M Starting from 33’6’ (possibly, a:'g = k)

unconstralined minimization algorithm to find an

, use an

“approximate” minimizer xhtl of D _rt1.

Let k:=k+ 1. O

Must have o — 0, k — 0. o*T! := 0.10%, o*+1 := (oF)?, etc.

Algorithms for minimizing @,
e Linesearch, trust-region methods.

e o small: ®, very steep in the direction of constraints’
gradients, and so rapid change in &, for steps in such
directions; implications for “shape” of trust region.
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A convergence result for the penalty method

Theorem 21. (Global convergence of penalty method) Apply
the basic quadratic penalty method to the (eCP). Assume that
frceClyf = —c;(zF)/o", i =1, m, and

IV®_«(xF)|| < €, where €® — 0,k — oo,

and also o — 0, as k — oo. Moreover, assume that
z* — z*, where Ve¢;(x*), i = 1, m, are linearly independent.

Then z* is a KKT point of (eCP) and y* — y*, where y* is the
vector of Lagrange multipliers of (eCP) constraints. O

B Vc;(x*), 1 = 1,m, lin. indep. < the Jacobian matrix J(z*)
of the constraints is full row rank and so m < n.

m J(x*) not full rank, then =* (locally) minimizes the
infeasibility ||c(a:) || [Iet y* — oo in (¢) on the next inde]
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A convergence result for the penalty method

Proof of Theorem 21. J(z*) full rank =
AJ (x*)t = (J(z*)J(z*)T)~1J(x*) pseudo-inverse. As zF — x*
and J cont. = 3J(2*)* bounded above and cont. for all suff.
large k. Let y* = —c(z*)/o* and y* = J(z*) TV f(z*).

IV@k ()| = IV F(zF) — T(@*)Ty*|| < e (0)

[T (®) TV f(2*) — y*|| = [T (@*) T (Vf(2*) — T(=®)Ty*)| <

[T (@) T - IV f(z*) — T(=F)Ty*|| <

T (@F) T — J(@) T+ 1T (@)} ex < 2] T(z*) T |lex (o)

where in the last < we used z* — «* and Jt continuous.

Triangle inequality (add and subtr s+ Vv ) and def of y* give

y* —y*|| < | J(@F) TV (@) — T(@*)TV f(@*)]] + | T (@) TV f(a) — y*|
'hus y* — y* since = — x*, Jt and Vv f cont., (e) and ¢, — 0.
Using all these againin (¢) as £k — oco: Vf(z*) — J(=*)Ty* = 0.

As c(z¥) = —o*y*, o* — 0, y* — y* = c(x*) = 0. Thus z=* KKT.
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Derivatives of the penalty function

mLet y(o) := —c(x)/o: estimates of Lagrange multipliers.
m Let L be the Lagrangian function of (eCP),

L(z,y) := f(z) — y'c(z).
m P, (r) = f(x)+ %Hc(w)HZ. Then
V&, (z) = Vf(z) + ;J(x)Tc(z) = ViL(z,y(o)),
where J(x) Jacobian m x n matrix of constraints c(x).
V20, (x) = V2f(x)+ 137 ci(x)V3iei(z) + LI (z)TJ(x)
V2, L(z,y(0)) + LI ()" (z).

m o — 0: generally, ¢;(x) — 0 at the same rate with o for all
i. Thus usually, V2_L(z,y(o)) well-behaved.

Bo—0: Jx)lJ(x)/o—= J(x*)TJ(x*)/0 = co.
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lll-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] = m eigenvalues of V2®_x(z*)
are ©(1/0*%) and hence, tend to infinity as £ — ~o (ie, o* — 0);
remaining n — m are O(1) in the limit.
e Hence, the condition number of V2&®_.(xF) IS O(1/0%)

— It blows up as ¥ — oo.

— worried that we may not be able to compute changes to
x* accurately. Namely, whether using linesearch or
trust-region methods, asymptotically, we want to minimize
®_.+1(x) by taking Newton steps, i.e., solve the system

V2®,(x)dr = V&, (x), (")
for dz from some current z = z** and o = o**.

Despite ill-conditioning present, we can still solve for dx
accurately!
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Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to
(V2. L(z,y(0)) + S J ()" I (2)) de = — (Vf(z) + ;I (z)Tc(z)),
where y(o) = —c(x)/o. Define auxiliary variable w
w = % (J(x)dx 4+ c(x)).
Then the Newton system (*) can be re-written as

ViL(z,y(o)) J(z)' \( dz \ _ V f(x)

J(x) —ol w | c(x)
This system is essentially independent of o for small 0 —-
cannot suffer from ill-conditioning due to o — 0.
m Still need to be careful about minimizing ®,, for small o. Eqg,
when using TR methods, use ||dz||p < A for TR constraint.

B takes into account ill-conditioned terms of Hessian so as to
encourage equal model decrease in all directions.

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming — p. 12/25



Perturbed optimality conditions

HEI%RI"IL f(x) subjectto c(x) = 0. (eCP)

(eCP) satisfies the KKT conditions
(dual feasibility) V f(x) = J(z)Ty and (primal feasibility) c(x) = 0.
Consider the perturbed problem

{Vﬂm—Jwazo

(eCPyp)
c(x)+oy =0

Find roots of nonlinear system (eCP,) as ¢ — 0 (o > 0); use
Newton’s method for root finding.
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Perturbed optimality conditions...

Newton’s method for system (eCP,) computes change
(dz, dy) tO (z,y) from

V2L(z,y) —J(x)T dx _ V() —J(x)'y
J(x) ol dy c(xz) + oy
Eliminating dy, gives

(meL(w, y) + %J(w)TJ(a:)> dr = — (Vf(:c) + %J(w)Tc(:c)>

— ‘same’ as Newton for quadratic penalty ! what’s different?

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming — p. 14/25



Perturbed optimality conditions...

Primal:

(V2L 5(0) + ~T @) T(@) ) de? = — (Vf(&) + (@) e(@) )

where y(o) = —c(x)/o.

Primal-dual:

(VimL(w,y) + %J(w)TJ(a:)) daPd = — (V f(x) + %J@)%(@)

The difference is in freedom to choose y in V2L(x,y) in
primal-dual methods - it makes a big difference computationally.
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Other penalty functions

Consider the general (CP) problem

minimizezcr~ f(x) subjectto cg(x) =0, cy(x)>0. (CP)

Exact penalty function: ®(z, o) Is exact if there is o, > 0 such
that if ¢ < 0., any local solution of (CP) is a local minimizer of
®(xz, o). (Quadratic penalty is inexact.)

Examples:
m I,-penalty function: ®(xz, o) = f(z) + ||ce(x)||
W [,-penalty function: let z— = min{z, 0},
®(x,0) = f(x) + 5 Yicplei(@)| + 2 X cplei()] .
Extension of quadratic penalty to (CP):
®(z,0) = f(@) + 5 llen@)? + 55 Yier ([ei(@)]7)°
(may no longer be suff. smooth; it is inexact)
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Augmented Lagrangian methods for
nonlinear programming
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Nonlinear equality-constrained problems

ng%@ f(x) subjectto c(x) =0, (eCP)

where f: R®* - R, ¢ = (c1,-..,¢m) : R® — R™ smooth.
Another example of merit function and method for (eCP):
augmented Lagragian function
B(z,u,0) = f(2) — uTe(@) + le(@)]
where v € R™ and o > 0 are auxiliary parameters.
Two interpretations:
m shifted quadratic penalty function
m convexification of the Lagrangian function
Aim: adjust « and ¢ to encourage convergence.
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Derivatives of the augmented Lagrangian function

Let J(x) Jacobian of constraints ¢(x) = (c1(x),...,cm(x)).

BV,d(x,u,0) =Vf(x) - J(x)u+ %J(a})Tc(az)
=N
Vi®(z,u,0) =V f(x) — J(aj)Ty(a:) = Vo L(z,y(x))
c(x)

where y(x) = u — Lagrange multiplier estimates

" VEiR(z,u,0) = VEf(2) — LIl wiViei(z)+
Lym ci(@)Viei(z) + LI (x)TJ(z)

—
V2®(z,u,0) = V3f(x) — >0, y:V3ci(x) + %J(a:)TJ(a:)
—> V2®(z,u,0) = VL(z,y(x)) + %J(m)TJ(:B)

m Lagrangian: £L(xz,y) = f(z) — yle(x)
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A convergence result for the augmented Lagrangian

Theorem 22. (Global convergence of augmented Lagrangian)
Assume that f,c € C! in (eCP) and let

k
C\T
S @)

b)

k
o
for given u* € R™, and assume that

|V®(z*, uk, o%)|| < F, where € — 0,k — .

Moreover, assume that ¥ — z*, where Ve;(z*), i = 1, m,
are linearly independent. Then y* — y* as k — oo with y*
satisfying V f(z*) — J(=z*)Ty* = 0.

If additionally, either * — 0 for bounded u* or u* — y* for
bounded o* then z* is a KKT point of (eCP) with associated
Lagrange multipliers y*. O
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A convergence result for the augmented Lagrangian

Proof of Theorem 22. The first part of Th 22, namely,
convergence of y* to y* = J(z*) TV f(z*) follows exactly as
in the proof of Theorem 21 (penalty method convergence).
(Note that the assumption o — 0 is not needed for this part
of the proof of Th 21.)

It remains to show that under the additional assumptions on
u* and o*, x* is feasible for the constraints. To see this, use
the definition of y* to deduce c(z*) = o*(u* — y*) and so

le(@®)]| = o®||u* — y*|| < o®lly* — y*|| + o®[|u® — y*|

Thus c(z*¥) — 0 as k — oo due to y* — y* (cf. first part of
theorem) and the additional assumptions on u* and o*. As
=¥ — x* and c is continuous, we deduce that c¢(z*) =0. O

Note that Augmented Lagrangian may converge to KKT
points without o* — 0, which limits the ill-conditioning.
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Contours of the augmented Lagrangian - an example
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Contours of the augmented Lagrangian - an example...
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Augmented Lagrangian methods

Th 22 — convergence guaranteed if «* fixed and ¢* — 0

[similar to quadratic penalty methods]
— y* — y* and ¢(z*¥) — 0

m check if ||c(z®)|| < n* where n* — 0

mif SO, set ukt! = y* and g**+1 = o*
[recall expression of y* in Th 22]
m if not, set v**! = «»* and o**+! < ro* for some r € (0, 1)

B reasonable: n* = (g*)0-110-97 where j iterations since o*
last changed

Under such rules, can ensure that o* is eventually unchanged
under modest assumptions, and (fast) linear convergence.

Need also to ensure that o* is sufficiently large that the
Hessian vV2&(z*, u*, o*) IS positive (semi-)definite.
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A basic augmented Lagrangian method

Given o9 >0 and u®, let k=0. Until
“convergence” do:

B Set nk and eFtl,
If |le(z®)|| < n*, set uFT! =y* and okt = ok.

Otherwise, set ufFT! =u* and oFt! < 1o*.

B Starting from :I:'g (possibly, wlg = in), use an
unconstrained minimization algorithm to find an
“Yapproximate” minimizer kTl of <I>(-,uk’+1,0'k+1)
for which ||Vg®(zFtl,uktl, okt1)|| < e+t

Let k:=k+ 1. O

m Often choose 7 = min(0.1, vV o*)

m Reasonable: € = (¢*)7+1, where j iterations since o*
last changed
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