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Penalty methods for nonlinear
programming
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Nonlinear equality-constrained problems

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → R
m smooth.

attempt to find local solutions (at least KKT points).

constrained optimization −→ conflict of requirements:
objective minimization & feasibility of the solution.

easier to generate feasible iterates for linear equality
and general inequality constrained problems;

very hard, even impossible, in general, when general
equality constraints are present.

=⇒ form a single, parametrized and unconstrained objective,
whose minimizers approach initial problem solutions as
parameters vary
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A penalty function for (eCP)

min
x∈Rn

f(x) subject to c(x) = 0. (eCP)

The quadratic penalty function:

min
x∈Rn

Φσ(x) = f(x) +
1

2σ
‖c(x)‖2, (eCPσ)

where σ > 0 penalty parameter.

σ: penalty on infeasibility;

σ −→ 0: ’forces’ constraint to be satisfied and achieve
optimality for f .

Φσ may have other stationary points that are not solutions
for (eCP); eg., when c(x) = 0 is inconsistent.
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Contours of the penalty function Φσ - an example
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Contours of the penalty function Φσ - an example...
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A quadratic penalty method

Given σ0 > 0, let k = 0. Until “convergence” do:

Choose 0 < σk+1 < σk.

Starting from xk
0
(possibly, xk

0
:= xk), use an

unconstrained minimization algorithm to find an

“approximate” minimizer xk+1 of Φσk+1.

Let k := k + 1. ♦

Must have σk → 0, k → 0. σk+1 := 0.1σk, σk+1 := (σk)2, etc.

Algorithms for minimizing Φσ:

• Linesearch, trust-region methods.

• σ small: Φσ very steep in the direction of constraints’
gradients, and so rapid change in Φσ for steps in such
directions; implications for “shape” of trust region.
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A convergence result for the penalty method

Theorem 21. (Global convergence of penalty method) Apply
the basic quadratic penalty method to the (eCP). Assume that

f, c ∈ C1, yk
i = −ci(x

k)/σk, i = 1,m, and

‖∇Φσk(xk)‖ ≤ ǫk, where ǫk → 0, k → ∞,

and also σk → 0, as k → ∞. Moreover, assume that
xk → x∗, where ∇ci(x

∗), i = 1,m, are linearly independent.

Then x∗ is a KKT point of (eCP) and yk → y∗, where y∗ is the
vector of Lagrange multipliers of (eCP) constraints. �

∇ci(x
∗), i = 1,m, lin. indep. ⇔ the Jacobian matrix J(x∗)

of the constraints is full row rank and so m ≤ n.

J(x∗) not full rank, then x∗ (locally) minimizes the
infeasibility ‖c(x)‖. [let yk → ∞ in (♦) on the next slide]
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A convergence result for the penalty method

Proof of Theorem 21. J(x∗) full rank =⇒
∃J(x∗)+ = (J(x∗)J(x∗)T )−1J(x∗) pseudo-inverse. As xk → x∗

and J cont. ⇒ ∃J(xk)+ bounded above and cont. for all suff.
large k. Let yk = −c(xk)/σk and y∗ = J(x∗)+∇f(x∗).

‖∇Φσk(xk)‖ = ‖∇f(xk) − J(xk)Tyk‖ ≤ ǫk (♦)

‖J(xk)+∇f(xk) − yk‖ = ‖J(xk)+(∇f(xk) − J(xk)Tyk)‖ ≤
‖J(xk)+‖ · ‖∇f(xk) − J(xk)Tyk‖ ≤
{

‖J(xk)+ − J(x∗)+‖ + ‖J(x∗)+‖
}

ǫk ≤ 2‖J(x∗)+‖ǫk (•)

where in the last ≤ we used xk → x∗ and J+ continuous.

Triangle inequality (add and subtr J+∇f) and def of y∗ give

‖yk − y∗‖ ≤ ‖J(xk)+∇f(xk) − J(x∗)+∇f(x∗)‖ + ‖J(xk)+∇f(xk) − yk‖
Thus yk → y∗ since xk → x∗, J+ and ∇f cont., (•) and ǫk → 0.
Using all these again in (♦) as k → ∞: ∇f(x∗) − J(x∗)Ty∗ = 0.
As c(xk) = −σkyk, σk → 0, yk → y∗ ⇒ c(x∗) = 0. Thus x∗ KKT.
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Derivatives of the penalty function

Let y(σ) := −c(x)/σ: estimates of Lagrange multipliers.

Let L be the Lagrangian function of (eCP),

L(x, y) := f(x) − yT c(x).

Φσ(x) = f(x) + 1

2σ
‖c(x)‖2. Then

∇Φσ(x) = ∇f(x) + 1

σ
J(x)T c(x) = ∇xL(x, y(σ)),

where J(x) Jacobian m × n matrix of constraints c(x).

∇2Φσ(x) = ∇2f(x) + 1

σ

∑m
i=1

ci(x)∇2ci(x) +
1

σ
J(x)TJ(x)

= ∇2
xxL(x, y(σ)) + 1

σ
J(x)TJ(x).

σ −→ 0: generally, ci(x) → 0 at the same rate with σ for all
i. Thus usually, ∇2

xxL(x, y(σ)) well-behaved.

σ → 0: J(x)TJ(x)/σ → J(x∗)TJ(x∗)/0 = ∞.
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Ill-conditioning of the penalty’s Hessian ...

‘Fact’ [cf. Th 5.2, Gould ref.] =⇒ m eigenvalues of ∇2Φσk(xk)

are O(1/σk) and hence, tend to infinity as k → ∞ (ie, σk → 0);
remaining n − m are O(1) in the limit.

• Hence, the condition number of ∇2Φσk(xk) is O(1/σk)

=⇒ it blows up as k → ∞.

=⇒ worried that we may not be able to compute changes to
xk accurately. Namely, whether using linesearch or
trust-region methods, asymptotically, we want to minimize
Φσk+1(x) by taking Newton steps, i.e., solve the system

∇2Φσ(x)dx = ∇Φσ(x), (*)

for dx from some current x = xk,i and σ = σk+1.

Despite ill-conditioning present, we can still solve for dx

accurately!

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming – p. 11/25



Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to
(

∇2
xxL(x, y(σ)) + 1

σ
J(x)TJ(x)

)

dx = −
(

∇f(x) + 1

σ
J(x)T c(x)

)

,

where y(σ) = −c(x)/σ. Define auxiliary variable w

w = 1

σ
(J(x)dx + c(x)).

Then the Newton system (*) can be re-written as

(

∇2L(x, y(σ)) J(x)⊤

J(x) −σI

)(

dx

w

)

= −
(

∇f(x)

c(x)

)

This system is essentially independent of σ for small σ =⇒
cannot suffer from ill-conditioning due to σ → 0.

Still need to be careful about minimizing Φσ for small σ. Eg,
when using TR methods, use ‖dx‖B ≤ ∆ for TR constraint.
B takes into account ill-conditioned terms of Hessian so as to
encourage equal model decrease in all directions.
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Perturbed optimality conditions

min
x∈Rn

f(x) subject to c(x) = 0. (eCP)

(eCP) satisfies the KKT conditions

(dual feasibility)∇f(x) = J(x)Ty and (primal feasibility) c(x) = 0.

Consider the perturbed problem






∇f(x) − J(x)Ty = 0

c(x)+σy = 0
(eCPp)

Find roots of nonlinear system (eCPp) as σ −→ 0 (σ > 0); use
Newton’s method for root finding.
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Perturbed optimality conditions...

Newton’s method for system (eCPp) computes change
(dx, dy) to (x, y) from




∇2L(x, y) −J(x)⊤

J(x) σI









dx

dy



 = −





∇f(x) − J(x)⊤y

c(x) + σy





Eliminating dy, gives
(

∇2
xxL(x, y) +

1

σ
J(x)TJ(x)

)

dx = −
(

∇f(x) +
1

σ
J(x)T c(x)

)

=⇒ ‘same’ as Newton for quadratic penalty ! what’s different?
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Perturbed optimality conditions...

Primal:
(

∇2
xxL(x, y(σ)) +

1

σ
J(x)TJ(x)

)

dxp = −
(

∇f(x) +
1

σ
J(x)T c(x)

)

where y(σ) = −c(x)/σ.

Primal-dual:
(

∇2
xxL(x, y) +

1

σ
J(x)TJ(x)

)

dxpd = −
(

∇f(x) +
1

σ
J(x)T c(x)

)

The difference is in freedom to choose y in ∇2L(x, y) in
primal-dual methods - it makes a big difference computationally.
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Other penalty functions

Consider the general (CP) problem

minimizex∈Rn f(x) subject to cE(x) = 0, cI(x) ≥ 0. (CP)

Exact penalty function: Φ(x, σ) is exact if there is σ∗ > 0 such
that if σ < σ∗, any local solution of (CP) is a local minimizer of
Φ(x, σ). (Quadratic penalty is inexact.)

Examples:

l2-penalty function: Φ(x, σ) = f(x) + 1

σ
‖cE(x)‖

l1-penalty function: let z− = min{z, 0},

Φ(x, σ) = f(x) + 1

σ

∑

i∈E |ci(x)| + 1

σ

∑

i∈I [ci(x)]
−.

Extension of quadratic penalty to (CP):

Φ(x, σ) = f(x) + 1

2σ
‖cE(x)‖2 + 1

2σ

∑

i∈I

(

[ci(x)]
−
)2

(may no longer be suff. smooth; it is inexact)
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Augmented Lagrangian methods for
nonlinear programming
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Nonlinear equality-constrained problems

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → R
m smooth.

Another example of merit function and method for (eCP):
augmented Lagragian function

Φ(x, u, σ) = f(x) − uT c(x) +
1

2σ
‖c(x)‖2

where u ∈ R
m and σ > 0 are auxiliary parameters.

Two interpretations:

shifted quadratic penalty function

convexification of the Lagrangian function

Aim: adjust u and σ to encourage convergence.
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Derivatives of the augmented Lagrangian function

Let J(x) Jacobian of constraints c(x) = (c1(x), . . . , cm(x)).

∇xΦ(x, u, σ) = ∇f(x) − J(x)Tu + 1

σ
J(x)T c(x)

=⇒
∇xΦ(x, u, σ) =∇f(x) − J(x)Ty(x) = ∇xL(x, y(x))

where y(x) = u − c(x)

σ
Lagrange multiplier estimates

∇2Φ(x, u, σ) = ∇2f(x) −
∑m

i=1
ui∇2ci(x)+

1

σ

∑m
i=1

ci(x)∇2ci(x) +
1

σ
J(x)TJ(x)

=⇒
∇2Φ(x, u, σ) = ∇2f(x) −∑m

i=1
yi∇2ci(x) +

1

σ
J(x)TJ(x)

=⇒ ∇2Φ(x, u, σ) = ∇2L(x, y(x)) + 1

σ
J(x)TJ(x)

Lagrangian: L(x, y) = f(x) − yT c(x)
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A convergence result for the augmented Lagrangian

Theorem 22. (Global convergence of augmented Lagrangian)
Assume that f, c ∈ C1 in (eCP) and let

yk = uk − c(xk)

σk
,

for given uk ∈ R
m, and assume that

‖∇Φ(xk, uk, σk)‖ ≤ ǫk, where ǫk → 0, k → ∞.

Moreover, assume that xk → x∗, where ∇ci(x
∗), i = 1,m,

are linearly independent. Then yk −→ y∗ as k −→ ∞ with y∗

satisfying ∇f(x∗) − J(x∗)Ty∗ = 0.

If additionally, either σk → 0 for bounded uk or uk → y∗ for

bounded σk then x∗ is a KKT point of (eCP) with associated
Lagrange multipliers y∗. �
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A convergence result for the augmented Lagrangian

Proof of Theorem 22. The first part of Th 22, namely,

convergence of yk to y∗ = J(x∗)+∇f(x∗) follows exactly as
in the proof of Theorem 21 (penalty method convergence).

(Note that the assumption σk → 0 is not needed for this part
of the proof of Th 21.)

It remains to show that under the additional assumptions on

uk and σk, x∗ is feasible for the constraints. To see this, use
the definition of yk to deduce c(xk) = σk(uk − yk) and so

‖c(xk)‖ = σk‖uk − yk‖ ≤ σk‖yk − y∗‖ + σk‖uk − y∗‖
Thus c(xk) −→ 0 as k → ∞ due to yk → y∗ (cf. first part of

theorem) and the additional assumptions on uk and σk. As

xk → x∗ and c is continuous, we deduce that c(x∗) = 0. �

Note that Augmented Lagrangian may converge to KKT

points without σk → 0, which limits the ill-conditioning.
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Contours of the augmented Lagrangian - an example
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Contours of the augmented Lagrangian - an example...
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Augmented Lagrangian methods

Th 22 =⇒ convergence guaranteed if uk fixed and σk −→ 0

[similar to quadratic penalty methods]
=⇒ yk −→ y∗ and c(xk) −→ 0

check if ‖c(xk)‖ ≤ ηk where ηk −→ 0

if so, set uk+1 = yk and σk+1 = σk

[recall expression of yk in Th 22]

if not, set uk+1 = uk and σk+1 ≤ τσk for some τ ∈ (0, 1)

reasonable: ηk = (σk)0.1+0.9j where j iterations since σk

last changed

Under such rules, can ensure that σk is eventually unchanged
under modest assumptions, and (fast) linear convergence.

Need also to ensure that σk is sufficiently large that the
Hessian ∇2Φ(xk, uk, σk) is positive (semi-)definite.
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A basic augmented Lagrangian method

Given σ0 > 0 and u0, let k = 0. Until

“convergence” do:

Set ηk and ǫk+1.

If ‖c(xk)‖ ≤ ηk, set uk+1 = yk and σk+1 = σk.

Otherwise, set uk+1 = uk and σk+1 ≤ τσk.

Starting from xk
0
(possibly, xk

0
:= xk), use an

unconstrained minimization algorithm to find an

“approximate” minimizer xk+1 of Φ(·, uk+1, σk+1)

for which ‖∇xΦ(xk+1, uk+1, σk+1)‖ ≤ ǫk+1.

Let k := k + 1. ♦

Often choose τ = min(0.1,
√
σk)

Reasonable: ǫk = (σk)j+1, where j iterations since σk

last changed

Lecture 11 and 12: Penalty methods and augmented Lagrangian methods for nonlinear programming – p. 25/25


	Nonlinear equality-constrained problems
	A penalty function for (eCP)
	Contours of the penalty function $Phi _{sigma }$ - an example
	Contours of the penalty function $Phi _{sigma }$ - an example...
	A quadratic penalty method
	A convergence result for the penalty method
	A convergence result for the penalty method
	Derivatives of the penalty function
	Ill-conditioning of the penalty's Hessian ...
	Solving accurately for the Newton direction
	Perturbed optimality conditions
	Perturbed optimality conditions...
	Perturbed optimality conditions...
	Other penalty functions
	Nonlinear equality-constrained problems
	Derivatives of the augmented Lagrangian function
	A convergence result for the augmented Lagrangian
	A convergence result for the augmented Lagrangian
	Contours of the augmented Lagrangian - an example
	Contours of the augmented Lagrangian - an example...
	Augmented Lagrangian methods
	A basic augmented Lagrangian method

