Lecture 13 and 14: Interior point methods for inequality constrained optimization

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Nonconvex inequality-constrained problems

 $\begin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x) \quad \text{subject to} \quad c(x) \geq 0, \end{array} \qquad (\text{iCP})\\ \text{where } f: \mathbb{R}^n \to \mathbb{R}, \ c = (c_1, \ldots, c_p) : \mathbb{R}^n \to \mathbb{R}^p \text{ smooth.} \\ \bullet \text{ ignore (linear) equality constraints for simplicity.} \end{array}$

- $\Omega := \{x: \ c(x) \ge 0\}$ feasible set; let $\Omega^o := \{x: \ c(x) > 0\}$
- Assumption: strictly feasible set $\Omega^o \neq \emptyset$. [SCQ (Slater)]
- Attempt to find local solutions (at least KKT points) of (iCP).

For (each) $\mu > 0$, associate the logarithmic barrier subproblem

 $\min_{x\in \mathbb{R}^n} f_\mu(x) := f(x) - \mu \sum_{i=1}^p \log c_i(x) \,\,\, ext{subject to} \,\,\, c(x) > 0. \quad (\mathsf{iCP}_\mu)$

• (iCP_{μ}) is essentially an unconstrained problem as each $c_i(x) > 0$ is enforced by the corresponding log barrier term of f_{μ} .

The logarithmic barrier function for (iCP)

Assume $x(\mu)$ minimizes the barrier problem

 $\min_{x\in\mathbb{R}^n}f_\mu(x)=f(x)-\mu\sum_{i=1}^n\log c_i(x)$ Subject to c(x)>0. (iCP $_\mu$)

Since $(c_i(x) \to 0 \implies -\log c_i(x) \to +\infty)$, $x(\mu)$ must be "well inside" the feasible set Ω , "far" from the boundaries of Ω , especially when $\mu > 0$ is "large". Strict feasibility well-ensured!

When μ "small", $\mu \to 0$: the term f(x) "dominates" the log barrier terms in the objective of (iCP_{μ}) $\Longrightarrow x(\mu)$ "close" to the optimal boundary of Ω . [This also causes ill-conditioning ...]

• Subject to conditions, some minimizers of f_{μ} converge to local solutions of (iCP), as $\mu \to 0$. But f_{μ} may have other stationary points, useless for our purposes.

Contours of the barrier function f_{μ} - an example

Barrier function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 \ge 1$

Contours of the barrier function f_{μ} - an example...

Barrier function for $\min x_1^2 + x_2^2$ subject to $x_1 + x_2^2 \ge 1$

Optimality conditions for (iCP) and (iCP $_{\mu}$)

$$f_{\mu}(x):=f(x)-\mu\sum_{i=1}^p\log c_i(x)\Longrightarrow$$

 $abla f_{\mu}(x) =
abla f(x) - \sum_{i=1}^{p} rac{\mu}{c_{i}(x)}
abla c_{i}(x) =
abla f(x) - \mu J(x)^{ op} c^{-1}(x),$ where J(x) Jacobian of c(x), $c^{-1}(x) := (1/c_{1}(x), \dots, 1/c_{p}(x)).$

First-order necessary optimality conditions for (iCP_{μ}) : [=uncons.] $x(\mu)$ local minimizer of $f_{\mu} \Longrightarrow \nabla f_{\mu}(x(\mu)) = 0 \iff$ $\nabla f(x(\mu)) = \sum_{i=1}^{p} \frac{\mu}{c_{i}(x(\mu))} \nabla c_{i}(x(\mu))$ with $\frac{\mu}{c_{i}(x(\mu))} > 0, i = \overline{1, p}$.

First-order necessary optimality conditions for (iCP): [=KKT] Assume $\Omega^o \neq \emptyset$. If x^* local minimizer of (iCP) \Longrightarrow $\nabla f(x^*) = \sum_{i=1}^p \lambda_i^* \nabla c_i(x^*), \lambda^* \ge 0, \lambda_i^* c_i(x^*) = 0, i = \overline{1, p}.$

If x^* (nondegenerate) local min. of (iCP) (2nd order sufficient optimality conditions), $\frac{\mu}{c_i(x(\mu))} \rightarrow \lambda_i^*$, $i = \overline{1, p}$, as $\mu \rightarrow 0$. Moreover ...

The path of barrier minimizers exists locally

... under second order sufficient optimality conditions at $x^* \in \Omega$, the central path of f_{μ} -minimizers { $x(\mu) : \mu_{\epsilon} > \mu > 0$ } exists, for μ_{ϵ} sufficiently small, and $x(\mu) \rightarrow x^*$, as $\mu \rightarrow 0$. Theorem 27 (Local existence of central path) Assume that

<u>Theorem 27.</u> (Local existence of central path) Assume that $\Omega^o \neq \emptyset$, and x^* is a local minimizer of (iCP) s. t.

(a)
$$\lambda_i^* > 0$$
 if $c_i(x^*) = 0$.

(b)
$$\nabla c_i(x^*), i \in \mathcal{A} := \{i \in \{1, \dots, p\} : c_i(x^*) = 0\}$$
, are
linearly independent. [LICQ]

(c) $\exists \alpha > 0$ such that $s^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) s \geq \alpha ||s||^2$, where s such that $J(x^*)_{\mathcal{A}} s = 0$, and $\nabla^2_{xx} \mathcal{L}$ is the Hessian of the Lagragian function of (iCP).

Then a unique, continuously differentiable vector function $x(\mu)$ of minimizers of f_{μ} exists in a neighbourhood of $\mu = 0$ and $x(\mu) \rightarrow x^*$ as $\mu \rightarrow 0$.

Central path trajectory

 $egin{aligned} \min(x_1-1)^2 + (x_2-0.5)^2 \ & ext{subject to} \ x_1+x_2 \leq 1 \ & ext{3}x_1+x_2 \leq 1.5 \ & (x_1,x_2) \geq 0 \end{aligned}$

Central path trajectory - nonconvex case

$$egin{aligned} \min{-2(x_1-0.25)^2+2(x_2-0.5)^2}\ & ext{subject to}\ &x_1+x_2\leq 1\ & ext{}\ &3x_1+x_2\leq 1.5\ &(x_1,x_2)\geq 0 \end{aligned}$$

Basic barrier method (Fiacco-McCormick, 1960s)

Given $\mu^0>0$, let k=0. Until "convergence" do:

Choose
$$0 < \mu^{k+1} < \mu^k$$
 .

Find x_0^k such that $c(x_0^k)>0$ (possibly, $x_0^k:=x^k$).

Starting from x_0^k , use an unconstrained minimization algorithm to find an "approximate" minimizer x^{k+1} of $f_{\mu^{k+1}}$. Let k:=k+1.

Must have $\mu^k \rightarrow 0$, $k \rightarrow 0$. $\mu^{k+1} := 0.1 \mu^k$, $\mu^{k+1} := (\mu^k)^2$, etc.

Algorithms for minimizing f_{μ} : take Newton steps inside

• Linesearch methods: use special linesearch to cope with singularity of the log.

• Trust region methods: "shape" trust region to cope with contours of the singularity of the log. Reject points for which $c(x^k + s^k)$ is not positive.

 $\begin{array}{l} \underline{\text{Theorem 28.}} \ (\text{Global convergence of barrier algorithm}) \\ \text{Apply the basic barrier algorithm to the (iCP). Assume that} \\ f,c\in \mathcal{C}^2, \ \lambda_i^k = \frac{\mu^k}{c_i(x^k)}, \ i=\overline{1,p}, \ \text{and} \\ \|\nabla f_{\mu^k}(x^k)\| \leq \epsilon^k, \ \text{where } \epsilon^k \to 0, k \to \infty \end{array}$

and also that $\mu^k \to 0$ as $k \to \infty$. Moreover, assume that $x^k \to x^*$, where $\nabla c_i(x^*)$, $i \in \mathcal{A}$, are linearly independent, where $\mathcal{A} := \{i : c_i(x^*) = 0\}$ (ie LICQ).

Then x^* is a KKT point of (iCP) and $\lambda^k \to \lambda^*$, where λ^* is the vector of Lagrange multipliers of x^* .

<u>Proof of Theorem 28.</u> Let $\mathcal{A} = \{i : c_i(x^*) = 0\}$ (active constraints) and $\mathcal{I} = \{1, \dots, p\} \setminus \mathcal{A}$ (inactive). Let $J_{\mathcal{A}}(x)$ denote the Jacobian of the active constraints and its pseudo-inverse

$$J_{\mathcal{A}}(x)^{+} = (J_{\mathcal{A}}(x)J_{\mathcal{A}}(x)^{T})^{-1}J_{\mathcal{A}}(x).$$

 $J_{\mathcal{A}}(x^*)$ is full rank (it is $p_a \times n$ where $p_a = |\mathcal{A}|$ and so $p_a \leq n$) $\implies J_{\mathcal{A}}(x^*)^+$ well-defined and $J_{\mathcal{A}}(x^k)^+$ well-defined and continuous for all k sufficiently large, due also to $x^k \to x^*$. Define $\lambda_{\mathcal{A}}^* = J_{\mathcal{A}}(x^*)^+ \nabla f(x^*)$ and $\lambda_{\mathcal{I}}^* = 0$. $x^k \to x^* \Longrightarrow c_i(x^k) \to c_i(x^*)$ and so for $i \in \mathcal{I}$, $c_i(x^k) \geq \frac{1}{2}c_i(x^*)$ for all k sufficiently large. Furthermore, for all k sufficiently large,

$$\|\lambda_{\mathcal{I}}^k\| = \sqrt{\sum_{i \in \mathcal{I}} \frac{(\mu^k)^2}{c_i(x^k)^2}} \le \frac{2\mu^k \sqrt{|\mathcal{I}|}}{\min_{i \in \mathcal{I}} c_i(x^*)} := \mu^k \epsilon^*. \quad (\Diamond)$$

Proof of Theorem 28. (continued) Note that $J(x^k)^T = (J_{\mathcal{A}}(x^k)^T \ J_{\mathcal{I}}(x^k)^T)$ and $\lambda^k = (\lambda^k_{\mathcal{A}} \ \lambda^k_{\mathcal{I}})$ and So $J(x^k)^T \lambda^k = J_{\mathcal{A}}(x^k)^T \lambda^k_{\mathcal{A}} + J_{\mathcal{I}}(x^k)^T \lambda^k_{\mathcal{I}}.$ $\|\nabla f(x^k) - J_{\mathcal{A}}(x^k)^T \lambda^k_{\mathcal{A}}\| \le \|\nabla f(x^k) - J(x^k)^T \lambda^k\| + \|J_{\mathcal{I}}(x^k)^T \lambda^k_{\mathcal{I}}\|$

 $= \|\nabla f_{\mu^{k}}(x^{k})\| + \|J_{\mathcal{I}}(x^{k})^{T}\lambda_{\mathcal{I}}^{k}\| \le \|\nabla f_{\mu^{k}}(x^{k})\| + 2\|J_{\mathcal{I}}(x^{*})\| \cdot \|\lambda_{\mathcal{I}}^{k}\|$

$$\leq \epsilon^k + 2\epsilon^* \| J_{\mathcal{I}}(x^*) \| \mu^k := \overline{\epsilon}^k, \quad (\Diamond \Diamond)$$

where in the penultimate inequality, we used $||J_{\mathcal{I}}(x^k)^T|| \leq ||J_{\mathcal{I}}(x^k) - J_{\mathcal{I}}(x^*)|| + ||J_{\mathcal{I}}(x^*)|| \leq 2||J_{\mathcal{I}}(x^*)||$ since $x^k \to x^*$ and *J* continuous; in the last inequality, we used (\Diamond) and the termination condition for the inner minimization of the barrier subproblem. Thus

Proof of Theorem 28. (continued) $\|J_{\mathcal{A}}(x^{k})^{+}\nabla f(x^{k}) - \lambda_{\mathcal{A}}^{k}\| = \|J_{\mathcal{A}}(x^{k})^{+}(\nabla f(x^{k}) - J_{\mathcal{A}}(x^{k})^{T}\lambda_{\mathcal{A}}^{k})\|$ $\leq 2\|J_{\mathcal{A}}(x^{*})^{+}\| \cdot \|\nabla f(x^{k}) - J_{\mathcal{A}}(x^{k})^{T}\lambda_{\mathcal{A}}^{k}\| \leq 2\|J_{\mathcal{A}}(x^{*})^{+}\|\bar{\epsilon}^{k}.$

Finally,

$$\begin{aligned} \|\lambda_{\mathcal{A}}^{k} - \lambda_{\mathcal{A}}^{*}\| &\leq \|\lambda_{\mathcal{A}}^{k} - J_{\mathcal{A}}(x^{k})^{+} \nabla f(x^{k})\| \\ &+ \|J_{\mathcal{A}}(x^{k})^{+} \nabla f(x^{k}) - J_{\mathcal{A}}(x^{*})^{+} \nabla f(x^{*})\| \end{aligned}$$

$$\leq 2 \|J_{\mathcal{A}}(x^*)^+\|\overline{\epsilon}^k + \alpha^k \longrightarrow 0,$$

since $\mu^k \to 0$, $\epsilon^k \to 0$, $x^k \to x^*$, J^+ and ∇f are continuous. From (\Diamond) and $\mu^k \to 0$, $\lambda_{\mathcal{I}}^k \to 0 = \lambda_{\mathcal{I}}^*$. Passing to the limit in ($\Diamond \Diamond$), we deduce $\nabla f(x^*) - J_{\mathcal{A}}(x^*)^T \lambda_{\mathcal{A}}^* = 0$. Since $c(x^k) > 0$, then $c(x^*) \ge 0$; from $\lambda^k > 0$, we deduce $\lambda^* \ge 0$. $\lambda_i^* c_i(x^*) = 0$ for all *i* by construction.

Minimizing the barrier function f_{μ}

Use Newton's method with linesearch or trust-region.

$$f_{\mu}(x) := f(x) - \mu \sum_{i=1}^{p} \log c_i(x) \Longrightarrow$$

 $abla f_{\mu}(x) =
abla f(x) - \sum_{i=1}^{p} rac{\mu}{c_i(x)}
abla c_i(x) =
abla f(x) - \mu J(x)^{ op} c^{-1}(x),$ where J(x) is the Jacobian of c(x). Let $C^j(x) := \text{diag}(c^j(x)).$

$$egin{aligned}
abla^2 f_\mu(x) &=
abla^2 f(x) - \sum_{i=1}^p rac{\mu}{c_i(x)}
abla^2 c_i(x) + \sum_{i=1}^p rac{\mu}{c_i(x)^2}
abla c_i(x)
abla c_i(x)^{ op} \ &= \
abla^2 f(x) - \sum_{i=1}^p rac{\mu}{c_i(x)}
abla^2 c_i(x) + \mu J(x)^{ op} C^{-2}(x) J(x). \end{aligned}$$

Given x such that c(x) > 0, the Newton direction for f_{μ} solves

$$abla^2 f_\mu(x) s = -
abla f_\mu(x) \qquad [\mu = \mu^{k+1}]$$
Estimates of the Lagrange multipliers: $\lambda_i(x) := \mu/c_i(x), \, i = \overline{1,p}.$

Minimizing the barrier function f_{μ} ...

 $\implies \nabla f_{\mu}(x) = \nabla f(x) - J(x)^T \lambda(x)$

 \implies gradient of Lagrangian of (iCP) at $(x, \lambda(x))$.

Recall: the Lagragian function of (iCP)

$$\mathcal{L}(x,\lambda):=f(x)-\sum_{i=1}^p\lambda_i c_i(x).$$

 $\implies \nabla^2 f_{\mu}(x) = \nabla^2 \mathcal{L}(x, \lambda(x)) + \mu J(x)^{\top} C^{-2}(x) J(x),$

 $\begin{array}{l} \text{As } \mu \to 0, \ \frac{\mu}{c_i(x)^2} \to 0 \ \text{for all} \ i \in \mathcal{A} \ (\text{active}), \\ \text{and so} \quad \mu J(x)^\top C^{-2}(x) J(x) \to \infty \ \text{as } \mu \to 0. \end{array} \end{array}$

I. Ill-conditioning of the Hessian of f_{μ}

Asymptotic estimates of the eigenvalues of $\nabla^2 f_{\mu^k}(x^k)$: 'Fact' (Th 5.2, Gould Ref.) \Longrightarrow

• $p_a = |\mathcal{A}|$ eigenvalues of $abla^2 f_{\mu^k}(x^k)$ tend to infinity as $k o \infty$.

- ullet the condition number of $abla^2 f_{\mu^k}(x^k)$ is $\mathcal{O}(1/\mu^k)$
 - \implies it blows up as $k \rightarrow \infty$.
 - \implies may not be able to compute x^k accurately.

This is the main reason for the barrier methods falling out of favour with the nonlinear optimization community in the 1960s.

II. Poor starting points

Recall we need x_0^k starting point for the (approximate) minimization of $f_{\mu^{k+1}}$, after the barrier parameter μ^k has been decreased to μ^{k+1} .

It can be shown that the current computed iterate x^k appears to be a very poor choice of starting point x_0^k , in the sense that the full Newton step $x^k + s^k$ will be asymptotically infeasible (i. e., $c(x^k + s^k) < 0$) whenever $\mu^{k+1} < 0.5\mu^k$ (i. e., for any meaningful decrease in μ^k). Thus the barrier method is unlikely to converge fast.

Solution to troubles I & II: use primal-dual IPMs.

Perturbed optimality conditions

Recall first order necessary conditions for (iCP_{μ}) : $x(\mu)$ local minimizer of $f_{\mu} \Longrightarrow \nabla f_{\mu}(x(\mu)) = 0 \iff$ $\nabla f(x(\mu)) = \mu J(x(\mu))^{\top} c^{-1}(x(\mu))$. Let $\lambda(\mu) := \mu c^{-1}(x(\mu))$.

Thus $(x(\mu), \lambda(\mu))$ satisfy:

$$\left\{ egin{array}{ll}
abla f(x) - J(x)^{ op}\lambda = 0, \ c_i(x)\lambda_i = \mu, \ i = \overline{1,p}, \end{array}
ight. ({\sf OPT}_\mu) \ c(x) > 0, \quad \lambda > 0. \end{array}
ight.$$

Compare with the KKT system for (iCP):

$$\left\{ egin{array}{ll}
abla f(x) - J(x)^ op \lambda = 0, \ c_i(x)\lambda_i = \mu, \ i = \overline{1,p}, \end{array}
ight.$$
 (KKT) $c(x) \geq 0, \quad \lambda \geq 0.$

Primal-dual path-following methods (1990s)

Satisfy c(x) > 0 and $\lambda > 0$, and use Newton's method to solve the system $e := (1, ..., 1)^T$

$$\left\{ egin{array}{ll} \nabla f(x) - J(x)^{ op}\lambda = 0, \\ C(x)\lambda = \mu e, \end{array}
ight. ({\sf OPT}_{\mu}) \end{array}
ight.$$

i. e., the Newton direction $(dx, d\lambda)$ satisfies

$$egin{pmatrix}
abla^2 \mathcal{L}(x,\lambda) & -J(x)^{ op} \ \Lambda J(x) & C(x) \end{pmatrix} egin{pmatrix} dx \ d\lambda \end{pmatrix} = - \left(egin{array}{c}
abla f(x) - J(x)^{ op} \lambda \ C(x) \lambda - \mu e \end{array}
ight),$$

where $\Lambda := \operatorname{diag}(\lambda)$. Eliminating $d\lambda$, we deduce

 $(\nabla^2 \mathcal{L}(x,s) + J(x)^\top C^{-1}(x) \Lambda J(x)) dx = -(\nabla f(x) - \mu J(x)^\top c^{-1}(x)).$

Primal-dual versus primal methods

Primal-dual:

$$(\nabla^2 \mathcal{L}(x, \lambda) + J(x)^\top C^{-1}(x) \Lambda J(x)) dx^{pd} = -\nabla \mathcal{L}(x, \lambda(x)).$$

Primal:

$$(
abla^2 \mathcal{L}(x, \boldsymbol{\lambda}(x)) + J(x)^\top C^{-1}(x) \boldsymbol{\Lambda}(x) J(x)) dx^p = -
abla \mathcal{L}(x, \boldsymbol{\lambda}(x)),$$

where
$$\lambda(x) := \mu c^{-1}(x)$$
.

 \implies In PD methods, changes to the estimates *s* of the Lagrange multipliers are computed explicitly on each iteration. In primal methods, they are updated from implicit information. Makes a huge difference!

• For PD IPMs, $x_0^k := x^k$ is a good starting point for the subproblem solution. Ill-conditioning of the Hessian can be 'overlooked' by solving in the right subspaces.

Ill-conditioning revisited (non-examinable)

Ill-conditioning does not imply can't solve equations accurately! Assume $\lambda_i^* > 0$ if $c(x^*) = 0$. Let $\mathcal{I} = \{i : c_i(x^*) > 0\}$. Drop x.

Note $C_{\mathcal{I}}^{-1}(x)$ and $\Lambda_{\mathcal{A}}^{-1}$ bounded above (as $x \to x^*$). Thus, in the limit,

$$\left(egin{array}{ccc}
abla^2 \mathcal{L} & -J_{\mathcal{A}}^{ op} \ J_{\mathcal{A}}^{ op} & 0 \end{array}
ight) \left(egin{array}{ccc} dx \ d\lambda_{\mathcal{A}} \end{array}
ight) = - \left(egin{array}{ccc}
abla f - J_{\mathcal{A}}^{ op} \lambda_{\mathcal{A}} - \mu J_{\mathcal{I}} c_{\mathcal{I}}^{-1} \ 0 \end{array}
ight)$$

Note that this approach needs an accurate prediction of the active \mathcal{A} and inactive \mathcal{I} sets 'asymptotically' during the run of a primal-dual algorithm (not so easy!)

Primal-dual path-following methods

Choice of barrier parameter: $\mu^{k+1} = \mathcal{O}((\mu^k)^2)$

 \implies Fast (superlinear) asymptotic convergence!

Several Newton iterations are performed for each value of μ (with linesearch or trust-region).

In implementations, it is essential to keep iterates away from boundaries early in the algorithm (else iterates may get trapped near the boundary \Rightarrow slow convergence!)

The computation of initial starting point x^0 satisfying $c(x^0) > 0$ is nontrivial. Various heuristics exist.

Powerful software available: IPOPT, KNITRO etc.

Linear Programming (LP): IPMs solve LP in polynomial time!

The simplex versus interior point methods for LP

- worst-case complexity: exponential versus polynomial for LP (in problem dimension/length of input);
 - the Klee-Minty example (1972): the simplex method has exponential running time in the worst-case; linear polynomial in the average case
 - IPMs: Karmarkar (1984), A New Polynomial-Time Algorithm for Linear Programming, Combinatorica. Khachiyan (the ellipsoid method, 1979). Renegar (best-known worst-case complexity bound). Central path is unique and global; Newton's method for barrier function can be precisely quantified.
- IPMs solve very large-scale LPs;
 - numerically-observed average complexity: log(LP dimension) iterations.

each IPM iteration more expensive than the simplex one.