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Nonconvex inequality-constrained problems

rg%R% f(x) subjectto ec(x) > 0, (iCP)
where f: R® - R, ¢ = (c1,-.--,¢p) : R® — RP Smooth.

e ignore (linear) equality constraints for simplicity.
e Q:={z: c(x) > 0} feasible set; let Q° := {z : c(z) > 0}

B Assumption: strictly feasible set ©° #£ 0. [SCQ (Slater)]
m Attempt to find local solutions (at least KKT points) of (ICP).

For (each) » > 0, associate the logarithmic barrier subproblem

p
;IEI%R% fu(z) := f(x) — u; log c;(x) subjectto c(x) > 0. (icP,)

e (ICP,) Is essentially an unconstrained problem as each
c;(z) > 01s enforced by the corresponding log barrier term of f,,.
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The logarithmic barrier function for (ICP)

Assume z(p) minimizes the barrier problem

wHEIIiRr}L fulx) = f(x) — ,uizzllog ci(z) subjectto c(z) > 0. (icp,)
Since (¢;(z) =0 = —logc;(x) = +o0), z(un) Must be “well
Inside” the feasible set ©, “far” from the boundaries of Q,

especially when . > 0 is “large”. Strict feasibility well-ensured!

When p “small’, p — 0: the term f(x) “dominates” the log
barrier terms in the objective of (ICP,) =— =(u) “close” to the
optimal boundary of Q. [This also causes ill-conditioning ...]

e Subject to conditions, some minimizers of f, converge to
local solutions of (ICP), as » — 0. But £, may have other
stationary points, useless for our purposes.
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Contours of the barrier function  f,, - an example
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Contours of the barrier function  f,, - an example...
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Optimality conditions for (ICP) and (ICP )

ful@) := f(x) — p Y0, log ei(e) =

Viu(x) =Vf(z) -3, Ci (w)ch(w) = Vf(z) — pJ(z) c (),
where J(x) Jacobian of ¢(x), ¢ (z) := (1/c1(x),...,1/cp(x)).

First-order necessary optimality conditions for (ICP,,): [Funcons.]

x () local minimizer of f, = Vfu.(x(pn)) =0 <=
Viz(p) = > s (m(u))ch(az(u)) with ﬁ >0,72=1,p.

First-order necessary optimality conditions for (iICP): [=KKT]

Assume Q° # 0. If * local minimizer of (ICP) —
V(x*) => 7  AiVei(z*), \* > 0, AXfci(z*) =0, =1, p.

If x* (nondegenerate) Iocal min. of (ICP) (2nd order sufficient
optimality conditions), — ( 5y AL L= 1,p,as u — 0.

Moreover ..
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The path of barrier minimizers exists locally

... under second order sufficient optimality conditions at z* € ,

the central path of f,-minimizers {x(n) : pe > p > 0} exists,
for u. sufficiently small, and z(p) — =*, as p — 0.

Theorem 27. (Local existence of central path) Assume that
Q° £ (), and z* is a local minimizer of (ICP) s. t.
(@) Af > 0if ¢i(z*) = 0.

(b) Vei(z*), i€ A:={iec{1,...,p}:ci(z*) =0}, are
linearly independent. [LICQ]

(c) 3a > 0 such that s"V2_L(z*,A*)s > «l|s||?, where s
such that J(z*) 4s = 0, and V2_L is the Hessian of the
Lagragian function of (1ICP).

Then a unigue, continuously differentiable vector function

x(p) of minimizers of f,, exists in a neighbourhood of x = 0
and z(u) — £* as u — 0. (]
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Central path trajectory
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Central path trajectory - nonconvex case

min —2(x; — 0.25)% + 2(z5 — 0.5)2
subjectto z; + =z, <1
3r1 +x2 < 1.5
(x1,x2) >0

Central path trajectory z(u) for
all p > o.
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Basic barrier method (Fiacco-McCormick, 1960s)

Given p® >0, let k =0. Untl “convergence” do:

B Choose 0 < pkFt! < uk.

B Find xf such that c(xf) > 0 (possibly, xk = x*).
W Starting from xg, use an unconstrained minimization
algorithm to find an “approximate” minimizer kTl

of fur+1. Let k:=k+ 1.
Must have p* — 0, k — 0. p**1 := 0.1k, p*+1 .= (uF)?, etc.

Algorithms for minimizing f,,: take Newton steps inside

e Linesearch methods: use special linesearch to cope with
singularity of the log.

e Trust region methods: “shape” trust region to cope with
contours of the singularity of the log. Reject points for which
c(z® + s*) Is not positive.
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A convergence result for the barrier algorithm

Theorem 28. (Global convergence of barrier algorithm)

Apply the basic barrier algorithm to the (ICP). Assume that

¥

ci(xk)’

IV fue(2¥)]| < €, where €° — 0,k — oo

frceC? A\ = i = 1, p, and

and also that u* — 0 as k — oco. Moreover, assume that
xz* — x*, where V¢;(z*), i € A, are linearly independent,
where A := {i : ¢;(x*) = 0} (ie LICQ).

Then z* is a KKT point of (iCP) and A* — A\*, where \* is the
vector of Lagrange multipliers of x*. ]
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A convergence result for the barrier algorithm

Proof of Theorem 28. Let A = {i : ¢;(=*) = 0} (active
constraints) and Z = {1,...,p} \ A (Inactive). Let J4(x) denote
the Jacobian of the active constraints and its pseudo-inverse

Ja(x)T = (Ja(x)Ja(x)") " Ja(x).

Ja(z*) Is full rank (it is p, x n where p, = |.A| and so p, < n)
— Ja(z*)T well-defined and J4(z*)* well-defined and
continuous for all k£ sufficiently large, due also to z* — z*.
Define A% = Ja(z*) TV f(z*) and X% = 0.

k¥ — x* = ¢;(z*) — c;(z*) and so for i € Z, c;(z*) > %cz(w*)
for all & sufficiently large. Furthermore, for all & sufficiently
large,

k)2 k
Z (1) < 2p”°\/|Z| k%

k| —
”)\I“ — \ieI Ci(wk)z — min;cz c;(x*) = p e, (O)
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

Note that J(z*)T = (Ja(z*)T Jz(=*)T) and X* = (A% Ak) and
SO J(z*)TAF = J ()T N5 + Jz(2*)TAL.

IV (@) — Ja(@®)T AL < IVF(®) = T(@*)TAE|| + [Tz (2*) T AZ]
= [V fur @) | + 1Tz (@) AZI < NIV Fue (@F) I + 2[| Tz () || - IAZ]

< € + 2¢||Jz(z") |pF = €7, (00)

where in the penultimate inequality, we used
[Tz (z®)T]| < ||Jz(2*) — Jz(=*)|| + [Tz (z*)|| < 2||Jz(=*)]| Since
zF — z* and J continuous; in the last inequality, we used (¢)

and the termination condition for the inner minimization of the
barrier subproblem. Thus
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A convergence result for the barrier algorithm

Proof of Theorem 28. (continued)

[Ta(z®) TV f(2®) — A4l = [[Ta(=®)T(V (@) — Ja(z*)"AL) |l
< 2| Ja(@*)F] - IV F(2*) — Ja(@®) TN || < 2)|Tax*)T||e".

Finally,
[AS =A%l < NS — Ja(z®) TV f(a¥)]]
+|Ta(z®) TV () — Ja(z*)TVF(z)]

< 2| Ja(z*)t|€® + o — 0,

since pu* — 0, ¢ — 0, 2* — z*, J* and VvV are continuous.
From (¢) and p* — 0, AE — 0 = X%

Passing to the limit in (¢¢), we deduce

Vf(x*) — Ja(z*)TA* = 0. Since c(z*) > 0, then ¢(z*) > 0; from
Ak > 0, we deduce A\* > 0. Xi¢;(z*) = o for all < by
construction.
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Minimizing the barrier function  f,

Use Newton’s method with linesearch or trust-region.
fu(@) = f(x) — pd> ;i logeci(z) =
Viu(x) = Vf(z) — >0, i (m)ch(w) = Vf(x) — pJ(z) c (),
where J(x) Is the Jacobian of ¢(x). Let C’J(a:) := diag(c? (z)).

p

Vif,(x) = V2f(x) — Z e )
= V@) - wa)vzci(w) + ud(2)TC2(2)J ().

Given x such that ¢(x) > 0, the Newton direction for f,, solves

Vifu(x)s = =V fu(x) [ = p* ]
Estimates of the Lagrange multipliers: \;(x) := u/ci(x), 1 = 1, p.
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Minimizing the barrier function  f, ...

= Vfu(z) = Vf(z) — J(x)" A()
— gradient of Lagrangian of (ICP) at (z, A (x)).

Recall: the Lagragian function of (iICP)
b
L(z,A) 1= f(x) — ) Aici(z).
=1

= Vfu(z) = V2L(x, A(z)) + pJ (z) ' C7*(x)J (2),

AS u— 0, - » 0 for all : € A (active),
ci(x)?

and so pJ(z)"C2%(x)J(x) — oo @S pu — 0.
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Potential difficulties

. lll-conditioning of the Hessian of f,,
Asymptotic estimates of the eigenvalues of V2 £, (z*):

'Fact’ (Th 5.2, Gould Ref.) —-

e p, = |A| eigenvalues of V2 f,.(«*) tend to infinity as
k — oo.

e the condition number of V2, (x*) is O(1/u*)

— It blows up as k£ — oc.
— may not be able to compute x* accurately.

This Is the main reason for the barrier methods falling out of
favour with the nonlinear optimization community in the
1960s.
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Potential difficulties ...

Il. Poor starting points

Recall we need z¥ starting point for the (approximate)
minimization of f,«+1, after the barrier parameter 1* has been
decreased to p*+1.

It can be shown that the current computed iterate «=* appears
to be a very poor choice of starting point zf, in the sense that
the full Newton step =* + s* will be asymptotically infeasible
(i. e., c(z* + s*) < 0) whenever p*+1 < 0.5uF (i. e., for any
meaningful decrease in 1*). Thus the barrier method is
unlikely to converge fast.

Solution to troubles | & II: use primal-dual IPMs.
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Perturbed optimality conditions

Recall first order necessary conditions for (ICP,,):

z(p) local minimizer of f,, = V f,(z(p)) = 0 <
Vi(x(p) = pd(x(n) e (x(pn)). Let AM(p) := pc™ (z(p)).

Thus (x(u), A(p)) satisfy:
{Vﬂm—waxzm
Cz(w)Az — My 1= mv (OPTM)
c(x) >0, A>0.

Compare with the KKT system for (iCP):
Vf(x)—J(x)'X=0,
{ ci()Ai = p, @ = 1,p, (KKT)
c(x) >0, AX>0.
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Primal-dual path-following methods (1990s)

Satisfy e¢(x) > 0 and XA > 0, and use Newton’s method to

solve the system e:=(1,...,1)T
Vi) —J(x)' A =0,
C(x)\ = ue, (OPT,)

l. e., the Newton direction (dx, d\) satisfies

ViL(x,A) —J(x)" de \ [ Vf(x) - J(x) A
AJ(x) C(x) dx | C(z)\ — pe ’

where A := diag(\). Eliminating d\, we deduce
(V2L(2, )+ (2) ' C™H () AT (z))de = —(V f(z)—pd (z) ().
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Primal-dual versus primal methods

Primal-dual:

(V2L (x,\) + J(x) ' C ™ Hx)AT(x))dxP? = —V L(x, A\(x)).
Primal:
(V2L (z, A(2))+T(2)TC L (2)A(z) J(z))dz? = —VL(z, X(z)),

where \(z) := pc™1(x).

— In PD methods, changes to the estimates s of the
Lagrange multipliers are computed explicitly on each iteration.

In primal methods, they are updated from implicit information.
Makes a huge difference!

e For PD IPMs, =¥ := z* is a good starting point for the
subproblem solution. lll-conditioning of the Hessian can be
‘overlooked’ by solving in the right subspaces.
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lll-conditioning revisited (non-examinable)

lll-conditioning does not iImply can’t solve equations accurately!
Assume X! > 0 if ¢(z*) = 0. LetZ = {i : ¢;(=*) > 0}. Drop =.

vie —JT dx Vf—JT
= — —
AJTT C d\ C\ — e
V3L +J;C7 ALz —J A dx B Vf—Jisa— pJrcs?
Ja C',AA;\1 dAa ca(x) — /,l)\;tl
Note c;*(x) and A%' bounded above (as = — z*). Thus, in the limit,

VL —J, dx B Vf—Jida— pJrest
Jl 0 dA 4 0 '

Note that this approach needs an accurate prediction of the
active A and inactive Z sets ‘asymptotically’ during the run of
a primal-dual algorithm (not so easy!)
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Primal-dual path-following methods

Choice of barrier parameter: p*+t1 = O((u*)?)
— Fast (superlinear) asymptotic convergence!

Several Newton iterations are performed for each value of u
(with linesearch or trust-region).

In Implementations, it is essential to keep iterates away from
boundaries early in the algorithm (else iterates may get
trapped near the boundary = slow convergence!)

The computation of initial starting point z° satisfying
c(z®) > 0 is nontrivial. Various heuristics exist.

Powerful software available: IPOPT, KNITRO etc.

Linear Programming (LP): IPMs solve LP in polynomial time!
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The simplex versus interior point methods for LP

m worst-case complexity: exponential versus polynomial for
LP (in problem dimension/length of input);

m the Klee-Minty example (1972): the simplex method
has exponential running time in the worst-case; linear
polynomial in the average case

m |IPMs: Karmarkar (1984), A New Polynomial-Time
Algorithm for Linear Programming, Combinatorica.
Khachiyan (the ellipsoid method, 1979).

Renegar (best-known worst-case complexity bound).
Central path is unique and global; Newton’s method
for barrier function can be precisely quantified.

m |[PMs solve very large-scale LPs;

m numerically-observed average complexity:
log(LP dimension) iterations.

m each IPM iteration more expensive than the simplex one.
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