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Global convergence of the GTR method

Theorem 11 (GTR global convergence)

Let f ∈ C2(Rn) and bounded below on R
n. Let ∇f be

Lipschitz continuous on R
n with Lipschitz constant L ≥ 1(∗).

Let {xk} be generated by the generic trust region (GTR)

method, and let the computation of sk be such that

mk(s
k) ≤ mk(s

k

c
) for all k. Then either

there exists k ≥ 0 such that ∇f(xk) = 0

or
limk→∞ ‖∇f(xk)‖ = 0.

[(*) L ≥ 1 for convenience, to ease calculations.]

We (only) prove lim infk→∞ ‖∇f(xk)‖ = 0 (which also
implies finite termination of GTR) next.
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Computation of the Cauchy point

Computation of the Cauchy point: find αk
c global solution of

min
α>0

mk(−α∇f(xk)) subject to ‖α∇f(xk)‖ ≤ ∆k,

where mk(s) = f(xk) + sT∇f(xk) + 1
2
sT∇2f(xk)s, & ∇f(xk) 6= 0.

‖α∇f(xk)‖ ≤ ∆k & α > 0⇔ 0 < α ≤
∆k

‖∇f(xk)‖
:= α.

φ(α) := mk(−α∇f(xk)) = f(xk) − α‖∇f(xk)‖2 +
α2

2
hk,

where hk := ∇f(xk)T∇2f(xk)∇f(xk).

φ′(0) = −‖∇f(xk)‖2 < 0 so φ decreasing from α = 0 for suff.
small α; thus αk

c > 0.

hk > 0: αmin :=
‖∇f(xk)‖2

hk
= argminα>0 φ(α).

=⇒ αk
c = min(αmin, α).

hk ≤ 0: φ(α) unbounded below on IR and so αk
c = α.
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Proof of global convergence of the GTR method

Lemma 12: (Cauchy model decrease) In GTR with Cauchy
decrease mk(s

k) ≤ mk(s
k
c) for all k, we have the model

decrease for each k,

f(xk) − mk(s
k) ≥ f(xk) − mk(s

k
c)

≥ 1
2
‖∇f(xk)‖min

{

∆k,
‖∇f(xk)‖

1+‖∇2f(xk)‖

}

Proof of Lemma 12. (Recall Computation of the Cauchy point)
If hk ≤ 0, then mk(−αk

c∇f(xk)) ≤ f(xk) − αk
c‖∇f(xk)‖2. In this

case, we also have αk
c = α =

∆k

‖∇f(xk)‖
and so

f(xk) − mk(s
k
c) ≥ ∆k‖∇f(xk)‖.

Else, hk > 0; then αk
c = min{αmin, α} where αmin = ‖∇f(xk)‖2/hk.

Assume first that αk
c = α. Then αk

ch
k ≤ ‖∇f(xk)‖2 and

f(xk) − mk(s
k
c ) = αk

c‖∇f(xk)‖2 −
(αk

c
)2

2 hk ≥
αk

c

2 ‖∇f(xk)‖2,
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Proof of global convergence of the GTR method

Proof of Lemma 12 (continued).

and using the expression of α,
f(xk) − mk(s

k
c) ≥ ∆k

2‖∇f(xk)‖
‖∇f(xk)‖2 = 1

2
∆k‖∇f(xk)‖.

Finally, let αk
c = αmin = ‖∇f(xk)‖2/hk. Replacing this value in

the model decrease we get

f(xk) − mk(s
k
c) = αk

c‖∇f(xk)‖2 −
(αk

c)
2

2
hk =

‖∇f(xk)‖4

2hk
,

and further, by Cauchy-Schwarz and Rayleigh quotient
inequalities,

‖∇f(xk)‖4

2hk = ‖∇f(xk)‖4

2(∇f(xk))T ∇2f(xk)∇f(xk)

≥ ‖∇f(xk)‖2

2‖∇2f(xk)‖
≥ ‖∇f(xk)‖2

2(1+‖∇2f(xk)‖)
(∗).

Thus f(xk) − mk(s
k
c) ≥ ‖∇f(xk)‖2

2(1+‖∇2f(xk)‖)
. �

[(*) ‘+1’ is only needed to cover the case H
k = 0.]
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Proof of global convergence of the GTR method

Lemma 13: (Model error bound) Let f ∈ C2(Rn) and ∇f be
Lipschitz continuous on R

n with Lipschitz constant L. Then in
GTR, for all k ≥ 0, we have |f(xk + sk) − mk(s

k)| ≤ L∆2
k.

Proof of Lemma 13. Mean-value theorem gives
f(xk + sk) = f(xk) + (sk)T∇f(xk) + 1

2
(sk)T∇2f(ξk)sk

for some ξk on line segment [xk, xk + sk]. Then the definition
of mk(s) = f(xk) + sT∇f(xk) + 1

2
sT∇2f(xk)s gives

|f(xk + sk) − mk(s
k)| ≤1

2
|(sk)T∇2f(ξk)sk − (sk)T∇2f(xk)sk|

≤ 1
2
|(sk)T∇2f(ξk)sk| + 1

2
|(sk)T∇2f(xk)sk|

≤ 1
2
[‖∇2f(ξk)‖ + ‖∇2f(xk)‖] · ‖sk‖2 ≤ L‖sk‖2≤ L∆2

k,

where in the penultimate inequality we used that (∇f Lipschitz
continuous with const. L) ⇐⇒ (‖∇2f‖ uniformly bounded
above by L), and in the last inequality we used that ‖sk‖ ≤ ∆k. �
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Proof of global convergence of the GTR method

Lemma 14: (Successful iterations) Let f ∈ C2(Rn) and ∇f be
Lipschitz continuous on R

n with Lipschitz constant L ≥ 1. In
GTR with Cauchy decrease mk(s

k) ≤ mk(s
k
c) for all k,

suppose that ∇f(xk) 6= 0 and

∆k ≤
0.45

L
‖∇f(xk)‖. (1)

Then iteration k is successful and ∆k+1 ≥ ∆k.

Proof of Lemma 14. ∇f Lipschitz continuous on R
n with

Lipschitz constant L ≥ 1 =⇒ 1 + ‖∇2f(x)‖ ≤ 2L and so from

(1), we deduce ∆k ≤
‖∇f(xk)‖

1 + ‖∇2f(xk)‖
. Lemma 12 now gives that

f(xk) − mk(s
k) ≥

1

2
‖∇f(xk)‖∆k > 0

and Lemma 13 that |f(xk + sk) − mk(s
k)| ≤ L∆2

k. We evaluate

|ρk − 1| = |f(xk+sk)−mk(s
k)|

f(xk)−mk(sk)
≤

2L∆2

k

∆k‖∇f(xk)‖
= 2L∆k

‖∇f(xk)‖
≤ 0.9 ⇒ ρk ≥ 0.1. �
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Proof of global convergence of the GTR method

Lemma 15: (Lower bound on TR radius) Let f ∈ C2(Rn) and
∇f be Lipschitz continuous on R

n with Lipschitz constant
L ≥ 1. In GTR with Cauchy decrease mk(s

k) ≤ mk(s
k
c) for all

k, suppose that there exists ǫ > 0 such that ‖∇f(xk)‖ ≥ ǫ for
all k. Then

∆k ≥
0.45

2L
ǫ for all k ≥ 0.

Proof of Lemma 15. Assume the contrary: k is the first
iteration such that ∆k+1 < 0.45

2L
ǫ. Then k unsuccessful and

∆k+1 = ∆k

2
. Thus ∆k = 2∆k+1 < 0.45

L
ǫ ≤ 0.45

L
‖∇f(xk)‖ and so

by Lemma 14, k must be successful, contradiction. �
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Proof of global convergence of the GTR method

Theorem 16: (The case of finitely many successful iterations)
Let f ∈ C2(Rn) and ∇f be Lipschitz continuous on R

n with
Lipschitz constant L ≥ 1. In GTR with Cauchy decrease
mk(s

k) ≤ mk(s
k
c) for all k, suppose that there are finitely many

successful iterations that occur. Then xk = x∗ for all k
sufficiently large and ∇f(x∗) = 0.

Proof of Theorem 16. Let ko be the last successful iteration.
Then GTR implies xk = x∗ for all k ≥ ko + 1. As all remaining
iterations are unsuccessful, ∆k+1 = 1

2
∆k for all k ≥ ko + 1 and

so ∆k −→ 0 as k → ∞. If ∇f(xko+1) 6= 0, then let
ǫ = ‖∇f(xko+1)‖ in Lemma 15, which implies that ∆k is
bounded away from zero; contradiction. Thus ∇f(xko+1) = 0

and so ∇f(xk) = ∇f(x∗) = 0 for all k ≥ ko + 1. �
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Proof of global convergence of the GTR method

Theorem 17: (At least one limit point is stationary) Let
f ∈ C2(Rn) and and bounded below on R

n. Let ∇f be
Lipschitz continuous on R

n with Lipschitz constant L ≥ 1. Let
{xk} be generated by the generic trust region (GTR) method,
and let the computation of sk be such that mk(s

k) ≤ mk(s
k
c) for

all k. Then either there exists k ≥ 0 such that ∇f(xk) = 0 or
lim infk→∞ ‖∇f(xk)‖ = 0.

Proof of Theorem 17. If there exists k such that ∇f(xk) = 0,
then GTR terminates. Assume there exists ǫ > 0 such that
‖∇f(xk)‖ ≥ ǫ for all k. Then Th 16 implies that there are
infinitely many successful iterations k ∈ S, and from GTR/ρk,

f(xk) − f(xk+1) ≥ 0.1(f(xk) − mk(s
k))

≥ 0.1
2
‖∇f(xk)‖min

{

‖∇f(xk)‖
1+‖∇2f(xk)‖

,∆k

}

for all k ∈ S, where we also used Lemma 12.
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Proof of global convergence of the GTR method

Proof of Theorem 17 (continued).

∇f Lipschitz cont. with Lips const L ≥ 1 =⇒ ‖∇2f(x)‖ ≤ L ∀x.

Thus since ‖∇f(xk)‖ ≥ ǫ for all k, we have for all k ∈ S that

f(xk) − f(xk+1) ≥ 0.05ǫmin

{

ǫ

2L
,∆k

}

≥ 0.05ǫmin

{

ǫ

2L
,
0.45

2L
ǫ

}

,

where we also used Lemma 15. Thus

for all k ∈ S: f(xk) − f(xk+1) ≥ 0.01
2L

ǫ2. (*)

Since f(xk) ≥ flow for all k, we deduce
f(x0) − flow ≥ f(x0) − limk→∞ f(xk) ≥

∑∞
i=0(f(x

i) − f(xi+1))

=
∑

i∈S(f(x
i) − f(xi+1)) ≥ |S|0.01

2L
ǫ2 (**)

where in ’=’ we used f(xk) = f(xk+1) on all unsuccessful k,
and in the last ’≥’, we used (*) and |S| =no. of success-
ful iterations. But LHS of (**) is finite while RHS of (**) is infinite
since |S| = ∞. Thus there must exist k such that ‖∇f(xk)‖ < ǫ.�
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