Trust region methods (L7 and 8): Complete proof of global convergence (optional and non-examinable)

Coralia Cartis, Mathematical Institute, University of Oxford

C6.2/B2: Continuous Optimization

Global convergence of the GTR method

Theorem 11 (GTR global convergence) Let $f \in C^2(\mathbb{R}^n)$ and bounded below on \mathbb{R}^n . Let ∇f be Lipschitz continuous on \mathbb{R}^n with Lipschitz constant $L \ge 1^{(*)}$. Let $\{x^k\}$ be generated by the generic trust region (GTR) method, and let the computation of s^k be such that $m_k(s^k) \le m_k(s^k_c)$ for all k. Then either

there exists $k \ge 0$ such that $\nabla f(x^k) = 0$

or

 $\lim_{k\to\infty} \|
abla f(x^k)\| = 0.$

 $[(*) L \ge 1$ for convenience, to ease calculations.]

We (only) prove $\liminf_{k\to\infty} \|\nabla f(x^k)\| = 0$ (which also implies finite termination of GTR) next.

Computation of the Cauchy point

Computation of the Cauchy point: find α_c^k global solution of $\min_{\alpha>0} m_k(-\alpha \nabla f(x^k)) \text{ subject to } \|\alpha \nabla f(x^k)\| \leq \Delta_k,$ where $m_k(s) = f(x_k) + s^T \nabla f(x^k) + \frac{1}{2} s^T \nabla^2 f(x^k) s$, & $\nabla f(x^k) \neq 0$. $\| \alpha \nabla f(x^k) \| \leq \Delta_k \quad \& \ \alpha > 0 \Leftrightarrow \ 0 < \alpha \leq \frac{\Delta_k}{\| \nabla f(x^k) \|} := \overline{\alpha}.$ where $h^k := \nabla f(x^k)^T \nabla^2 f(x^k) \nabla f(x^k)$. $\phi'(0) = -\|\nabla f(x^k)\|^2 < 0$ so ϕ decreasing from $\alpha = 0$ for suff. small α ; thus $\alpha_c^k > 0$. $\blacksquare h^k > 0: \ \alpha_{\min} := \frac{\|\nabla f(x^k)\|^2}{h^k} = \arg \min_{\alpha > 0} \phi(\alpha).$ $\implies \alpha_c^k = \min(\alpha_{\min}, \overline{\alpha}).$ $h^k \leq 0$: $\phi(\alpha)$ unbounded below on IR and so $\alpha_c^k = \overline{\alpha}$.

Lemma 12: (Cauchy model decrease) In GTR with Cauchy decrease $m_k(s^k) \leq m_k(s_c^k)$ for all k, we have the model decrease for each k,

$$egin{aligned} f(x^k) & -m_k(s^k) \ & \geq & f(x^k) - m_k(s^k_c) \ & \geq & rac{1}{2} \|
abla f(x^k) \| \min \left\{ \Delta_k, rac{\|
abla f(x^k) \|}{1 + \|
abla^2 f(x^k) \|}
ight\} \end{aligned}$$

Proof of Lemma 12. (Recall Computation of the Cauchy point) If $h^k \leq 0$, then $m_k(-\alpha_c^k \nabla f(x^k)) \leq f(x^k) - \alpha_c^k \|\nabla f(x^k)\|^2$. In this case, we also have $\alpha_c^k = \overline{\alpha} = \frac{\Delta_k}{\|\nabla f(x^k)\|}$ and so $f(x^k) - m_k(s_c^k) \geq \Delta_k \|\nabla f(x^k)\|$. Else, $h^k > 0$; then $\alpha_c^k = \min\{\alpha_{\min}, \overline{\alpha}\}$ where $\alpha_{\min} = \|\nabla f(x^k)\|^2 / h^k$. Assume first that $\alpha_c^k = \overline{\alpha}$. Then $\alpha_c^k h^k \leq \|\nabla f(x^k)\|^2$ and

 $f(x^k) - m_k(s^k_c) = lpha^k_c \|
abla f(x^k)\|^2 - rac{(lpha^k_c)^2}{2}h^k \geq rac{lpha^k_c}{2} \|
abla f(x^k)\|^2,$

Proof of Lemma 12 (continued).

and using the expression of $\overline{\alpha}$,

 $f(x^k) - m_k(s_c^k) \ge \frac{\Delta_k}{2\|\nabla f(x^k)\|} \|\nabla f(x^k)\|^2 = \frac{1}{2} \Delta_k \|\nabla f(x^k)\|.$ Finally, let $\alpha_c^k = \alpha_{\min} = \|\nabla f(x^k)\|^2 / h^k$. Replacing this value in the model decrease we get

$$f(x^k) - m_k(s^k_c) = lpha^k_c \|
abla f(x^k)\|^2 - rac{(lpha^k_c)^2}{2}h^k = rac{\|
abla f(x^k)\|^4}{2h^k},$$

and further, by Cauchy-Schwarz and Rayleigh quotient inequalities,

$$\begin{split} \frac{\|\nabla f(x^{k})\|^{4}}{2h^{k}} &= \frac{\|\nabla f(x^{k})\|^{4}}{2(\nabla f(x^{k}))^{T}\nabla^{2}f(x^{k})\nabla f(x^{k})} \\ &\geq \frac{\|\nabla f(x^{k})\|^{2}}{2\|\nabla^{2}f(x^{k})\|} \geq \frac{\|\nabla f(x^{k})\|^{2}}{2(1+\|\nabla^{2}f(x^{k})\|)} (*). \end{split}$$
Thus $f(x^{k}) - m_{k}(s_{c}^{k}) \geq \frac{\|\nabla f(x^{k})\|^{2}}{2(1+\|\nabla^{2}f(x^{k})\|)}.$
 \Box
 $[(*) +1' \text{ is only needed to cover the case } H^{k} = 0.]$

Lemma 13: (Model error bound) Let $f \in C^2(\mathbb{R}^n)$ and ∇f be Lipschitz continuous on \mathbb{R}^n with Lipschitz constant *L*. Then in GTR, for all $k \ge 0$, we have $|f(x^k + s^k) - m_k(s^k)| \le L\Delta_k^2$.

Proof of Lemma 13. Mean-value theorem gives

 $f(x^k + s^k) = f(x^k) + (s^k)^T \nabla f(x^k) + \frac{1}{2} (s^k)^T \nabla^2 f(\xi^k) s^k$ for some ξ^k on line segment $[x^k, x^k + s^k]$. Then the definition of $m_k(s) = f(x^k) + s^T \nabla f(x^k) + \frac{1}{2} s^T \nabla^2 f(x^k) s$ gives

$$\begin{aligned} |f(x^{k} + s^{k}) - m_{k}(s^{k})| &\leq \frac{1}{2} |(s^{k})^{T} \nabla^{2} f(\xi^{k}) s^{k} - (s^{k})^{T} \nabla^{2} f(x^{k}) s^{k}| \\ &\leq \frac{1}{2} |(s^{k})^{T} \nabla^{2} f(\xi^{k}) s^{k}| + \frac{1}{2} |(s^{k})^{T} \nabla^{2} f(x^{k}) s^{k}| \end{aligned}$$

 $\leq \frac{1}{2} [\|\nabla^2 f(\xi^k)\| + \|\nabla^2 f(x^k)\|] \cdot \|s^k\|^2 \leq L \|s^k\|^2 \leq L \Delta_k^2,$

where in the penultimate inequality we used that (∇f Lipschitz continuous with const. L) $\iff (\|\nabla^2 f\|$ uniformly bounded above by L), and in the last inequality we used that $\|s^k\| \leq \Delta_k$. \Box

Lemma 14: (Successful iterations) Let $f \in C^2(\mathbb{R}^n)$ and ∇f be Lipschitz continuous on \mathbb{R}^n with Lipschitz constant $L \ge 1$. In GTR with Cauchy decrease $m_k(s^k) \le m_k(s^k_c)$ for all k, suppose that $\nabla f(x^k) \ne 0$ and

$$\Delta_k \le \frac{0.45}{L} \|\nabla f(x^k)\|. \tag{1}$$

Then iteration k is successful and $\Delta_{k+1} \geq \Delta_k$.

Proof of Lemma 14. ∇f Lipschitz continuous on \mathbb{R}^{n} with Lipschitz constant $L \geq 1 \Longrightarrow 1 + \|\nabla^{2}f(x)\| \leq 2L$ and so from (1), we deduce $\Delta_{k} \leq \frac{\|\nabla f(x^{k})\|}{1 + \|\nabla^{2}f(x^{k})\|}$. Lemma 12 now gives that $f(x^{k}) - m_{k}(s^{k}) \geq \frac{1}{2}\|\nabla f(x^{k})\|\Delta_{k} > 0$ and Lemma 13 that $|f(x^{k} + s^{k}) - m_{k}(s^{k})| \leq L\Delta_{k}^{2}$. We evaluate $|\rho_{k} - 1| = \frac{|f(x^{k} + s^{k}) - m_{k}(s^{k})|}{f(x^{k}) - m_{k}(s^{k})|} \leq \frac{2L\Delta_{k}^{2}}{\Delta_{k}\|\nabla f(x^{k})\|} = \frac{2L\Delta_{k}}{\|\nabla f(x^{k})\|} \leq 0.9 \Rightarrow \rho_{k} \geq 0.1.$ Lemma 15: (Lower bound on TR radius) Let $f \in C^2(\mathbb{R}^n)$ and ∇f be Lipschitz continuous on \mathbb{R}^n with Lipschitz constant $L \geq 1$. In GTR with Cauchy decrease $m_k(s^k) \leq m_k(s^k_c)$ for all k, suppose that there exists $\epsilon > 0$ such that $\|\nabla f(x^k)\| \geq \epsilon$ for all k. Then 0.45

 $\Delta_k \geq rac{0.45}{2L} \epsilon \quad ext{for all } k \geq 0.$

Proof of Lemma 15. Assume the contrary: k is the first iteration such that $\Delta_{k+1} < \frac{0.45}{2L}\epsilon$. Then k unsuccessful and $\Delta_{k+1} = \frac{\Delta_k}{2}$. Thus $\Delta_k = 2\Delta_{k+1} < \frac{0.45}{L}\epsilon \le \frac{0.45}{L} \|\nabla f(x^k)\|$ and so by Lemma 14, k must be successful, contradiction. \Box

<u>Theorem 16</u>: (The case of finitely many successful iterations) Let $f \in C^2(\mathbb{R}^n)$ and ∇f be Lipschitz continuous on \mathbb{R}^n with Lipschitz constant $L \ge 1$. In GTR with Cauchy decrease $m_k(s^k) \le m_k(s_c^k)$ for all k, suppose that there are finitely many successful iterations that occur. Then $x^k = x_*$ for all ksufficiently large and $\nabla f(x_*) = 0$.

Proof of Theorem 16. Let k_o be the last successful iteration. Then GTR implies $x^k = x_*$ for all $k \ge k_o + 1$. As all remaining iterations are unsuccessful, $\Delta_{k+1} = \frac{1}{2}\Delta_k$ for all $k \ge k_o + 1$ and so $\Delta_k \longrightarrow 0$ as $k \to \infty$. If $\nabla f(x^{k_o+1}) \ne 0$, then let $\epsilon = \|\nabla f(x^{k_o+1})\|$ in Lemma 15, which implies that Δ_k is bounded away from zero; contradiction. Thus $\nabla f(x^{k_o+1}) = 0$ and so $\nabla f(x^k) = \nabla f(x_*) = 0$ for all $k \ge k_o + 1$. \Box

Theorem 17: (At least one limit point is stationary) Let $f \in C^2(\mathbb{R}^n)$ and and bounded below on \mathbb{R}^n . Let ∇f be Lipschitz continuous on \mathbb{R}^n with Lipschitz constant $L \ge 1$. Let $\{x^k\}$ be generated by the generic trust region (GTR) method, and let the computation of s^k be such that $m_k(s^k) \le m_k(s^k_c)$ for all k. Then either there exists $k \ge 0$ such that $\nabla f(x^k) = 0$ or $\liminf_{k \to \infty} ||\nabla f(x^k)|| = 0$.

Proof of Theorem 17. If there exists k such that $\nabla f(x^k) = 0$, then GTR terminates. Assume there exists $\epsilon > 0$ such that $\|\nabla f(x^k)\| \ge \epsilon$ for all k. Then Th 16 implies that there are infinitely many successful iterations $k \in S$, and from GTR/ρ_k ,

$$\begin{array}{rcl} f(x^k) - f(x^{k+1}) & \geq & 0.1(f(x^k) - m_k(s^k)) \\ & \geq & \frac{0.1}{2} \|\nabla f(x^k)\| \min\left\{\!\!\frac{\|\nabla f(x^k)\|}{1 + \|\nabla^2 f(x^k)\|}, \Delta_k\!\right\} \\ \text{or all } k \in \mathcal{L} \text{ where we also used Lemma 12} \end{array}$$

for all $k \in S$, where we also used Lemma 12.

Proof of Theorem 17 (continued).

 $\begin{array}{l} \nabla f \text{ Lipschitz cont. with Lips const } L \geq 1 \Longrightarrow \|\nabla^2 f(x)\| \leq L \; \forall x. \\ \text{Thus since } \|\nabla f(x^k)\| \geq \epsilon \text{ for all } k \text{, we have for all } k \in \mathcal{S} \text{ that} \\ f(x^k) - f(x^{k+1}) \geq 0.05\epsilon \min\left\{\frac{\epsilon}{2L}, \Delta_k\right\} \geq 0.05\epsilon \min\left\{\frac{\epsilon}{2L}, \frac{0.45}{2L}\epsilon\right\}, \\ \text{where we also used Lemma 15. Thus} \end{array}$

for all $k \in \mathcal{S}$: $f(x^k) - f(x^{k+1}) \ge \frac{0.01}{2L}\epsilon^2$. (*) Since $f(x^k) \ge f_{\text{low}}$ for all k, we deduce $f(x^0) - f_{\text{low}} \ge f(x^0) - \lim_{k \to \infty} f(x^k) \ge \sum_{i=0}^{\infty} (f(x^i) - f(x^{i+1}))$ $= \sum_{i \in \mathcal{S}} (f(x^i) - f(x^{i+1})) \ge |\mathcal{S}| \frac{0.01}{2L} \epsilon^2$ (**)

where in '=' we used $f(x^k) = f(x^{k+1})$ on all unsuccessful k, and in the last ' \geq ', we used (*) and $|\mathcal{S}| =$ no. of successful iterations. But LHS of (**) is finite while RHS of (**) is infinite since $|\mathcal{S}| = \infty$. Thus there must exist k such that $\|\nabla f(x^k)\| < \epsilon$.