C6.2/B2. Continuous Optimization

Problem Sheet 4

Please hand-in for marking Problems 2, 3, 7 and 9. The remaining problems are optional.

1. The fundamental theorem of linear inequalities, also known as *Farkas' Lemma* states that: given any vectors $b \in \mathbb{R}^n$ and $a_i \in \mathbb{R}^n$, $i \in \{1, \ldots, m\}$, the set

$$\{s: b^T s < 0 \text{ and } a_i^T s \ge 0, i \in \{1, \dots, m\}\}$$

is empty if and only if

$$b \in C = \{\sum_{i=1}^{m} a_i y_i : y_i \ge 0, i \in \{1, \dots, m\}\}.$$

(In other words, a vector b lies in the cone C generated by the vectors a_i if and only if it cannot be separated from the vectors a_i by a separating hyperplane generated by s.) Use this lemma in the next part of the problem (for appropriate choices of b, a_i and m).

Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ and $c : \mathbb{R}^n \to \mathbb{R}^p$ are \mathcal{C}^1 functions. Let x^* be a local minimizer of

$$\min_{x} f(x) \quad c(x) \ge 0$$

Show that, provided a suitable first-order constraint qualification holds, there exists a vector $\lambda_* \in \mathbb{R}^p$ of Lagrange multipliers such that

$$\nabla f(x^*) = J(x^*)^T \lambda^*, \quad c(x^*) \ge 0, \quad \lambda^* \ge 0, \quad \lambda_i^* c_i(x^*) = 0, \ i \in \{1, \dots, p\}.$$

(These are the KKT conditions for inequality-constrained problems. Use ideas and approaches from the proof of Theorem 16; note that we only need a first-order representation of the feasible path in the proof of Theorem 16. Recall that it is sufficient to consider the active constraints at x^* .)

2. Consider the following constrained optimization problem

$$\min_{(x_1, x_2) \in \mathbb{R}^2} \ \frac{1}{2} x_1^2 - x_2^2 \quad \text{subject to} \quad 1 - x_1^2 - x_2^2 \ge 0.$$
(1)

- (a) Write down the system of Karush-Kuhn-Tucker (KKT) conditions for problem (1). By solving this system as a function of x and the Lagrange multiplier, find (all) the KKT points \hat{x} of problem (1).
- (b) State the Slater constraint qualification for problem (1); does it hold for this problem? Conclude from this if each (local) minimizer of (1) is a KKT point (in other words, if first-order necessary optimality conditions hold for this problem).
- (c) Using (a) and (b), or otherwise, find a global minimizer of (1). Argue also that a global minimizer of (1) exists.
- (d) Is the constraint of problem (1) active at each (local or global) minimizer of (1)? Justify your answer.
- 3. Consider the problem

$$\min_{(x_1,x_2)\in\mathbb{R}^2} f(x_1,x_2) = -x_1 + x_2 \quad \text{subject to} \begin{cases} 0 \le x_1 \le a, \\ 0 \le x_2 \le 1, \\ x_2 \ge x_1^2, \end{cases}$$
(2)

where a > 0 is a fixed positive constant.

- (a) By drawing a diagram of the feasible region and the contours of f(x), or otherwise, determine the solution of problem (2).
- (b) Show that the set of active constraints at the solution differs according to whether or not a is greater than a certain fixed value \overline{a} , and determine \overline{a} . Obtain the value of the Lagrange multipliers of the active constraints at the solution in both cases, and verify that the KKT conditions are satisfied.
- 4. Consider the following quadratic programming problem.

minimize
$$f(x) = (x_1 - 1)^2 + (x_2 - 4)^2$$

subject to $-2x_1 - x_2 = -8$ (1)
 $x_1 - x_2 \ge -2$ (2)
 $x_1 \ge 0$ (3)
 $x_2 \ge 0$ (4)

For the points $x = (4 \ 0)^T$ and $x = (2 \ 4)^T$, compute the Lagrange multipliers and hence determine whether the KKT conditions are satisfied. If the KKT conditions cannot be satisfied then determine a feasible descent direction. If they are, determine whether the second order sufficient conditions are satisfied and deduce whether the vertex is a minimizer.

5. For the following problem,

minimize
$$f(x) = x_1^2 + x_2^2$$

subject to $c(x) = (x_1 - 1)^3 - x_2^2 = 0$

- (i) Sketch contours of f(x) and the points which satisfy c(x) = 0. Deduce the solution x^* of the problem.
- (ii) Use the constraint to eliminate x_2 and show that the solution obtained in (i) is obtained. What happens if the problem is solved by eliminating x_1 ?
- (iii) Attempt to solve the problem by the method of Lagrange multipliers. Show that either $x_2 = 0$ or $\lambda = -1$ and that both lead to a contradiction. Deduce that the stationary point condition for the Lagrangian function is not a necessary condition for a minimizer. What notable property does $\nabla c(x^*)$ have?
- 6. Consider the problem

$$\min_{x \in \mathbb{R}^2} -x_1 - x_2 \quad \text{subject to} \quad 1 - x_1^2 - x_2^2 = 0.$$
(3)

- (a) Use the first-order necessary optimality (KKT) conditions to solve this problem.
- (b) Let $x(\mu) = (x_1(\mu), x_2(\mu))$ be a local minimizer of the quadratic penalty function for (3). Show that $x_1(\mu) = x_2(\mu)$ and $2x_1(\mu)^3 x_1(\mu) \mu/2 = 0$.
- (c) Among the two solutions for $x(\mu)$, pick the one for which $x_1(\mu) > 0$. Show that as $\mu \to 0$,

$$x_1(\mu) = \frac{1}{\sqrt{2}} + a\mu + O(\mu^2).$$

Find the constant a.

(d) Now consider the problem

$$\min - x_1 - x_2$$

s.t. $1 - x_1^2 - x_2^2 = 0$,
 $x_2 - x_1^2 \ge 0$.

Show how the penalty function may be modified to solve this problem. Show that there is a range of values of μ for which the minimisers of the two penalty functions agree.

7. Consider the problem

$$\min - x_1 x_2 x_3 \tag{4}$$

s.t. $72 - x_1 - 2x_2 - 2x_3 = 0.$

(i) For $x^* = (24\ 12\ 12)^T$ verify that there exists a Lagrange multiplier λ^* such that (x^*, λ^*) is a KKT point.

(ii) Now let

$$x(\mu) := \arg\min_{x \in \mathbb{R}^2} Q(x,\mu),$$

where $Q(x,\mu)$ is the quadratic penalty function for (4). Verify that the explicit expression for $x(\mu)$ given by

$$x_1(\mu) = 2x_2(\mu), \quad x_2(\mu) = x_3(\mu) = \frac{24}{1 + \sqrt{1 - 8\mu}}$$

satisfies $\nabla_x Q(x(\mu), \mu) = 0$, and verify that $x(\mu) \to x^*$ as $\mu \to 0$.

- (iii) Let $\mu = 1/9$. Find $x(\mu)$ and verify that $\nabla^2_{xx}Q(x(\mu),\mu)$ is positive definite, so that $x(\mu)$ is a local minimizer of $Q(x,\mu)$.
- (iv) Show that $-c(x(\mu))/\mu \to \lambda^*$, where c is the equality constraint function in (4).
- 8. (a) Show that the logarithmic barrier function for the problem of minimizing $1/(1+x^2)$ subject to $x \ge 1$ is unbounded from below for all μ .

Comment: Thus the barrier function approach will not always work.

(b) Find the minimizer $x(\mu)$, and its related Lagrange multiplier estimate $\lambda(\mu)$, of the logarithmic barrier function for the problem of minimizing $\frac{1}{2}x^2$ subject to $x \ge 2a$ where a > 0. What is the rate of convergence of $x(\mu)$ to x_* as a function of μ ? And the rate of convergence of $\lambda(\mu)$ to λ_* as a function of μ ?

Comment: Problems with strictly complementary solutions (for which $\lambda_i^* > 0$ whenever $c_i(x^*) = 0$) generally have $x(\mu) - x_* = \mathcal{O}(\mu)$ and $\lambda(\mu) - \lambda_* = \mathcal{O}(\mu)$ as $\mu \to 0$.

(c) Find the minimizer $x(\mu)$, and its related Lagrange multiplier estimate $\lambda(\mu)$, of the logarithmic barrier function for the problem of minimizing $\frac{1}{2}x^2$ subject to $x \ge 0$. How do the errors $x(\mu) - x_*$ and $\lambda(\mu) - \lambda_*$ behave as a function of μ ?

Comment: Without strict complementarity, the errors $x(\mu) - x_*$ and $\lambda(x(\mu)) - \lambda_*$ are generally larger than in the strictly complementary case.

9. Apply the augmented Lagrangian function to minimize

$$f(x) = 2x_1^2 - x_2^2$$
 subject to $c(x) = x_1 + x_2 - 1 = 0$.

The estimate of the Lagrange multiplier of the constraint is revised by the formula

$$\lambda^{k+1} = \lambda^k - \frac{c(x(\lambda^k))}{\sigma}$$

where $x(\lambda^k)$ is a minimizer of the augmented Lagrangian function. Show that the sequence of values of λ^k converges if $\sigma > 0$ is sufficiently small. Find the value of σ such that each iteration reduces the difference between λ^k and the optimal multiplier λ^* by a factor of 10.

10. Suppose that an algorithm for unconstrained minimization fails if the ratio of the largest to the smallest eigenvalue of the Hessian matrix exceeds 10^{10} at the required solution. It is used to find an approximate solution of the problem

$$f(x) = x_1^2 + 2x_2^2$$
 subject to $x_1 + x_2 - 1 \ge 0$

in two ways. Specifically, the functions

$$x_1^2 + 2x_2^2 + r(x_1 + x_2 - 1)^2$$
 and $x_1^2 + 2x_2^2 - r\log(x_1 + x_2 - 1)$

are minimized over \mathbb{R}^2 using a large and a small value of r, respectively. Estimate the accuracy of the approximate solution in each case when r is close to a value that causes failure.