C6.2/B2. Continuous Optimization

Mathematical Background
(brief review)

Optimization draws on a number of key results in analysis and linear algebra. We briefly summarize
some useful notions here. For more details, you may consult Burden, R.L., & Faires, J.D., Numerical
Analysis, 6th edition or later, Brooks/Cole Publishing.

Single valued functions and their derivatives

All the functions f : R™ +— R in this course are assumed to be smooth.

e The function [ : R"® — R is a linear function iff it is of the form
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and d € R and g € R" are known.

e The function g(x) : R — R is a quadratic function iff it is of the form
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may be taken to be constant and symmetric. Although a quadratic function is strictly nonlinear,
its properties are such that it is treated separately. Thus the term ‘nonlinear function’ often refers
to a function which is not linear or quadratic.

e For the function f :R"™ — R, the vector of first partial derivatives or gradient vector is

of
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where V denotes the gradient operator (8/0z, 8/dxzo ... 0/0xy)".

e For the function f: R"™ — R, the matrix of second partial derivatives or Hessian matrix

H(z) = Vig(x)]" = V[Vf(2)]" = VYV f(z) = V> f(x),



where
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Note that ngia(fr)v = grfiéi% for all 4,5 € {1,...,n}, whenever f € C2(R") (i.e., f is twice continuously
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differentiable, and so the Hessian exists and is continuous).

Properties of quadratic functions A quadratic function ¢(z) = d+ g%« + %.’ETH,T has the following
properties

e Vg=g+ Hx.
e V¢=H.
Vector valued functions and their derivatives

All the vector valued functions r : R™ — R™ in this course are assumed to be smooth.

The Jacobian matrix of first partial derivatives of a function r : R™ +— R™ is
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Note that the Hessian matrix for a function f : R™ +— R may be interpreted as being the Jacobian matrix

of Vf.

Taylor expansions

Numerical methods for solving nonlinear equation and optimization problems are frequently based on
Taylor expansions. The following expansions are particularly important.

The first-order Taylor expansion of f : R™ — R around = € R" is
fla+h) = f(z) + V(@) h+||h]22(h),

where z(h) — 0 as h — 0. This yields the following linear approximation to f which interpolates its

value and gradient at x,
I(h) = f(z) + Vf(z)"h.

We also have the alternative expression for the first-order Taylor expansion
flz+h) = f(z) + Vf(E)h,
where £ € R™ is a point on the line segment determined by = and = + h.

The second-order Taylor expansion of f: R™ — R around z € R" is

flz+h) = f(z) + V(@) h+ %hT[VQf(a?)]h + [|h]132(R),



where z(h) — 0 as h — 0. This yields the following quadratic approximation to f which interpolates its
value, gradient and Hessian at z, namely,

1
q(h) = f(@) + VI(@) h+ S0 [V f(@)h.
Alternatively, the second-order Taylor expansion of f around x can be expressed as
1
fle+h) = f@) + V@) h+ ShT [V F(E)h,

where £ € R" is a point on the line segment determined by = and = + h.

The first order Taylor expansion of Vf : R™ — R™ around x € R" is
V(@ +h) =V f(x) + V2 f(@)h+ ||h]|l2z(h),

where z(h) — 0 as h — 0. This yields the following linear approximation to V f which interpolates its
value and Jacobian at x, namely,
I(h) = Vf(z)+ V2f(z)h.

Note that now we only have the following integral alternative expression for the Taylor expansion (as the
function V f is vector-valued),

1
Vf(z+h)=Vf(x) +/O V2 f(x + th)hdt.

The first order Taylor expansion of r : R” — R™ about x € R" is
r(z+h) =r(x) + J(@)h + ||h]22(h),

where z(h) — 0 as h — 0. This yields the following linear approximation to r which interpolates its value
and Jacobian at x, namely,
I(h) =r(z) + J(z)h.

Note that now we only have the following integral alternative expression for the Taylor expansion (as the
function r is vector-valued),

r(z+h) =r(z)+ /01 J(x + th)hdt.

Linear algebra
e Linear independence and bases.
m
The set of vectors {x;}7; C R™ is linearly independent iff Z ar;=0=a0;,=0,1=1,...,m.

i=1
A set of n linearly independent vectors {z;}?_; in R™ forms a basis for R” and any vector € R"
n

can be expressed as x = Z ;T
i=1
e Matrix definiteness.
The matrix A is positive (negative) definite <= 2T7Az >0 (27 Ax <0) V2 € R", 2 # 0.
The matrix A is positive (negative) semi-definite +—= 27 Az >0 (27 Az <0) V2 € R™.

A matrix which is not positive/negative definite or positive/negative semi-definite is indefinite.

e Eigenvalues and eigenvectors.

If the matrix H is symmetric then there exists an orthogonal matrix @ and diagonal matrix A such
that H = QAQT.

— The entries A1,..., A, of A are the eigenvalues of H.



— The columns (vectors) qi,...,q, of @ are the eigenvectors of H.

n n
Any vector z € R™ can be expressed as x = Z a;q;, where o = 27q;. Also H = Z )\iqiq?.
i=1 1=1

If A is an eigenvalue of a nonsingular matrix H then 1/)\ is an eigenvalue of H~! so H™! =
2ic1 ,\%qz‘qiT ‘

Vector norms

The Euclidean (also called l3) measure of the magnitude of the vector z = (21 ... z,)T € R™ is the value
lzll = yfat + -+ 2.

This is an example of a vector norm.

A norm on the space of vectors R™ is a function, || - || : R™ — R, such that for all vectors z, y € R™ and
scalars a € R,

i) [lz] = 0;

i) ||lz]| =0 <= x=0;

i) flaz|| = laf - [lz];
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The most commonly-used vector norms are referred to as the l,-norms (or simply as the p-norms),

namely,
1
n P
lllp = (Z I:zrilp) ,

i=1

and so, in particular,

Hx”l = |$1|—|—|x2|+_|_|xn|
”x”Z = \/x%+m§++$%z\/:ch
|2lloe = max{lz1],|zal,...,|Tal}.

Matrix norms

When y = Az, the magnitude of y clearly depends on the magnitudes of A and z. In order to estimate
this, without computing y explicitly, it is necessary to have a measure of the magnitude of A. This is
achieved by using a matrix norm.

A norm on the space of square matrices R"*" is a function, || - || : R"*™ — R, such that for all matrices
A, B € R""™ and scalars a € R,

i) [[A[l = 0;

i) Al =0 <= A=0;

v

A+ Bl < Al + [IB];
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The most commonly-used matrix norms are p-norms. These are given by the corresponding vector
p-norms according to the definition

[ Azl .
Al|l, = max or equivalentl All, = max ||Az
|| ||p z;ﬁO ||x||p q Y7 || ||P H$Hp:1 || ||Z77



and so, in particular,

1Al = Hgﬁaflﬂz‘lxlh = max; {31 |ayl}
-

Al = ”IIﬁaX1||A$||2 = max; \; (AT A)
Z||2=

e = max Ar] = max; {7 lai|}

where \;(AT A), for i = 1,...,n, are the eigenvalues of AT A. Note that although the matrix 2-norm has
useful theoretical properties it may be too difficult to compute in practice.

Two particularly important properties of the matrix p-norms (which follow directly from their definition)
are that for all vectors =,
[Az]lp < [|A]lplll,

and, given any A € R™*"™  there exists  # 0 such that
1Az, = [[Allpllzlp-

When referring to (p-) norms in general, it is convenient to drop the subscript.

The sequence of matrices { A%} in R"*" is said to converge to A with respect to the norm || - || if,
given any € > 0, there exists an integer K (€) such that

AR — Al <€ forall k> K(e).

If the matrix A satisfies ||A|| < 1 for some norm || - ||, then A¥ — 0 as k — oc.



