
C3.10 Additive and Combinatorial Number Theory, Hilary 2020 Ex-

ercises 4

Comment. This sheet is loosely based around proving the following result
of Furstenberg and Sárközy.

Theorem 1. Let α > 0. Suppose that N > N0(α). Then any set A ⊂ [N ]
with |A| > αN contains two different elements a, a′ differing by a square.

I have divided the proof of the theorem up into exercises which all have
something to do with other parts of the course, and which can hopefully be
attempted more-or-less independently of one another. As the main purpose of
this sheet is to practice technique, there is some redundancy.

The first set of questions concern the following theorem.

Theorem 2. We have

lim
N→∞

sup
θ∈R

inf
16n6N

‖n2θ‖R/Z = 0.

Statements like this are a little hard to parse, so let us reflect on the meaning:
given θ ∈ R and ε > 0, we can find n 6 Oε(1) such that ‖n2θ‖R/Z 6 ε, where
the Oε(1) is uniform in θ.

Question 1. By considering sets of the form {n : n2θ
2 (mod 1) ∈ I} for appro-

priate intervals I, deduce the theorem from Roth’s theorem.

Solution 1. Let α = 1/M for some integer M . By the pigeonhole principle
there is some interval I of length α such that there are at least αN values of
n 6 N such that n2θ/2 ∈ I. By Roth’s theorem, if n is large enough in terms of
α then this set contains three elements n, n+d, n+2d in arithmetic progression,
thus

n2θ

2
,
(n+ d)2θ

2
,
(n+ 2d)2θ

2
∈ I.

But then

d2θ =
n2θ

2
− 2

(n+ d)2θ

2
+

(n+ 2d)2θ

2
∈ I − 2I + I = [−2α, 2α].

Since α can be made arbitrarily small, the result follows. �

If f : R/Z → C is an integrable function, we define the Fourier transform

f̂(m) :=

∫ 1

0

f(θ)e(−θm).

In the next question, and in Question 4, ε > 0 is fixed and the dependence
of implied constants on ε is not indicated.
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Question 2. By considering the convolution of 1[−ε/2,ε/2] with itself, show that
there is a function ψ : R/Z → [0,∞) with the following properties:

• ψ is supported on [−ε, ε];

• ψ̂(0) =
∫

ψ = 1;

•
∑

m∈Z
|ψ̂(m)| <∞.

Solution 2. Set
ψ(x) = f ∗ f(x),

where f(x) = ε−11[−ε/2,ε/2](x).
Then

Supp(ψ) ⊂ Supp(f) + Supp(f) = [−ε/2, ε/2] + [−ε/2, ε/2] = [−ε, ε],

and
∫

ψ = (

∫

f)2 = 1.

Now

|f̂(m)| = |
1

2πimε
(eiπmε − e−iπmε)| ≪ε

1

|m|

and so

|ψ̂(m)| = |f̂(m)|2 ≪ε
1

|m|2
,

so indeed
∑

m

|ψ̂(m)| <∞.

Question 3. With ψ as in Q2, prove the inversion formula

ψ(θ) =
∑

m

ψ̂(m)e(θm).

(You may use the uniqueness property of Fourier series in the following form:

if f : R/Z → C is continuous and if f̂(n) = 0 for all n, then f is identically

zero.) Deduce that
∑∞

n=1
1
n2 = π2

6 .

Solution 3. Define
φ(θ) :=

∑

m

ψ̂(m)e(θm);

thus the aim is to show that φ = ψ. Now since
∑

m |ψ̂(m)| < ∞, we may

evaluate φ̂(m) by integrating term-by-term:

φ̂(n) =
∑

m

ψ̂(m)

∫ 1

0

e(θ(m− n))dθ

= ψ̂(n).
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Note also that φ is continuous, being a uniform limit of continuous functions
(again because

∑

m |ψ̂(m)| < ∞). Thus, if we define f(θ) := (ψ − φ)(θ), we

have f̂(n) = 0 for all n ∈ Z. Moreover, f is continuous since both ψ and φ are

(the latter by another application of the fact that
∑

m |ψ̂(m)| <∞), and so we
may invoke uniqueness of Fourier series.

For the second part, take ε = 1
2 . Note that (e

iπm/2−e−iπm/2)2 = −4·1m odd,
and so in this case

ψ̂(m) =
4

π2m2
1m odd (1)

for m 6= 0 by the computation from Question 2. By the inversion formula,

2 =
1

ε
= ψ(0) =

∑

m∈Z

ψ̂(m)

Since ψ̂(0) =
∫

ψ = 1, we see that

∑

m 6=0

ψ̂(m) = 1,

and so from (1)
∑

m∈Z,m odd

1

m2
=
π2

4
.

Thus
∑

m∈N,m odd

1

m2
=
π2

8
.

Finally,

∑

m∈N

1

m2
= (1 +

1

22
+

1

24
+

1

26
+ · · · )

∑

m∈N,m odd

1

m2
=
π2

6
.

Question 4. Suppose that there is no n 6 N such that ‖n2θ‖R/Z 6 ε.

(i) Using the result of Question 2, or otherwise, show that there is some
m = O(1), m 6= 0, such that

|
∑

n6N

e(mθn2)| ≫ N.

(the implied constants here should be uniform in θ).

(ii) Using an appropriate result from the course, show that there is some
nonzero q = O(1) such that ‖qθ‖R/Z ≪ N−2.

(iii) Give a second proof of Theorem 1.
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Solution 4. (i) If there is no n 6 N such that ‖n2θ‖R/Z then

N
∑

n=1

ψ(n2θ) = 0.

Expanding into Fourier (as justified by the inversion formula and/or the solution
to Question 3) it follows that

∑

m∈Z

ψ̂(m)
N
∑

n=1

e(mn2θ) = 0,

the interchange in the order of summation and integration being justified by
the fact that the sum over m is absolutely convergent. The contribution from
m = 0 is N , and so

∑

m∈Z\{0}

|ψ̂(m)||
∑

n6N

e(mθn2)| > N.

Pick M such that
∑

|m|>M |ψ̂(m)| < 1
2 (such an M could be found completely

explicitly using the estimates of Q 2, if desired). Then

∑

0<|m|6M

|ψ̂(m)||
∑

n6N

e(mθn2)| > N/2.

Since |ψ̂(m)| 6
∫

ψ = 1 for all m, it follows from the pigeonhole principle that
there is some m, 0 < |m| < M , such that

|
∑

n6N

e(mθn2)| > N/2M.

(ii) We may suppose thatN is sufficiently large, the result being true trivially
for N = O(1) (by massaging the ≪ term). We will use the Weyl-type inequality,
Proposition 4.3.1 in the notes. Applied here (with L = N , and δ = 1/2M ≫ 1),
this states that if N is sufficiently large then there is some q = O(1) such that
‖qmθ‖R/Z ≪ N−2. Redefining q to be qm (and noting this is still O(1)) we
obtain the result.

(iii) Let ε > 0. We have shown that if there is no n 6 N such that ‖n2θ‖R/Z
then there is some q = O(1) such that ‖qθ‖R/Z ≪ N−2. But then ‖q2θ‖R/Z ≪
N−2 (with a worse implied constant), and if N is sufficiently large this is < ε,
contrary to assumption. Therefore N = O(1), a conclusion which is equivalent
to the statement of Theorem 1. �

Question 5. Sketch a proof of the following result. There is a function ω(N) →
∞ with the following property. There is a partition [N ] = P1 ∪ · · · ∪ Pm into
progressions with square common difference, with |Pi| > ω(N) for all i, and
such that diamPi

(e(θ·)) 6 ω(N)−1 for all i.
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Solution 5. This follows by modifying the proof of Lemma 7.3.1 in the notes,
but using Theorem 1 in place of Dirichlet’s application of the pigeonhole prin-
ciple. Thus let d 6 N1/2 be a square with ‖θd‖R/Z 6 ε(N1/2). Here ε(M) → 0
as M → ∞, and without loss of generality we may assume it does not do so too
rapidly.

Set

ω(N) :=
1

100
ε(N1/2)−1/2

(say). Then ω(N) → ∞, but ω(N) < N0.1 by our assumption that ε is not too
small, and ‖θd‖R/Z 6 0.01ω(N)−2. By the same argument as in lectures, if P
is any progression with common difference d and length at most 10ω(N), then
diamP (e(θ·)) 6 ω(N)−1. Finally, by an argument essentially identical to the
one in lectures, we may partition [N ] into progressions with common difference
d and lengths between ω(N) and 10ω(N). �.

Given two functions f1, f2 : [N ] → R, define

T (f1, f2) :=
∑

x,d

f1(x)f2(x+ d)1X(d),

where X = {n2 : n 6 N1/2} (as in the course, specialised to k = 2).

Question 6. Write an expression for T (f1, f2) in terms of the Fourier trans-
forms of f1, f2 and 1X .

Solution 6. The formula is

∫ 1

0

f̂1(θ)f̂2(−θ)1̂X(θ)dθ.

To verify it, substitute in the definitions of the Fourier transforms and use
orthogonality. �

Write fA = 1A − α1[N ] for the balanced function of A.

Question 7. Suppose that A does not have any pair of elements differing by
a square. Show that there are two 1-bounded1 functions g1, g2, at least one
of which is fA, such that |T (g1, g2)| ≫ α2N3/2. (C can be whatever absolute
constant you like to make the statement true; you don’t have to specify it
explicitly.)

Solution 7. The assumption is that T (1A, 1A) = 0. Expand this as a sum of
four terms E1 + E2 + E3 + E4, where

E1 = T (α1[N ], α1[N ]),

E2 = T (fA, α1[N ]),

1That is, bounded pointwise by 1.
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E3 = T (α1[N ], fA),

E4 = T (fA, fA).

Trivially
E1 ≫ α2N3/2,

and so
|E2|+ |E3|+ |E4| ≫ α2N3/2.

But each of E2, E3, E4 is of the form T (g1, g2). The result follows. (This is very
similar to the proof of Proposition 7.2.1 in lectures).

Question 8. Using any results from the course that you like, explain why there
is a positive integer s such that

∫ 1

0

|1̂X(θ)|2sdθ ≪ Ns−1.

Solution 8. Note that Hua’s lemma (Sheet 5, Q2) gives this for s = 2, but
with an extra factor of No(1). There are (at least) two (related) ways to get the
stronger statement asked for, with some large value of s.

Method 1 (easiest). Note that, by expanding out and using orthogonality,
∫ 1

0
|1̂X(θ)|2sdθ is the number of (2s)-tuples (x1, · · · , x2s) with xi 6 N1/2 and

x21 + · · ·+ x2s = x2s+1 + · · ·+ x22s. In the notation of the course, this is

∑

n6sN

r2,s(n)
2.

However, one of the main theorems of the course (Theorem 3.1.2 and Proposition
3.1.1) gives that r2,s(n) ≪ ns/2−1 for s > 104. The claim follows.

Method 2 (harder). By Sheet 2, Q5 (with the exponent 5 there replaced by
2s), we see that for s > 3 we need only worry about the major arcs. This can
then be handled by minor adaptations of Chapter 5 of the notes (but there are
quite a lot of them!).

Note that in both cases we only need the easier upper bound S2,s(N) ≪ 1
for the singular series, which means the reliance on Chapter 6 of the notes is
minimal.

Question 9. Suppose that g1, g2 : [N ] → R are two 1-bounded functions.
Suppose that T (g1, g2) > δN3/2. Show that for i = 1, 2 we have supθ |ĝi(θ)| ≫δ

N . Hint: you may wish to use Hölder’s inequality, which states that

∫ 1

0

t
∏

i=1

φi(θ)dθ 6

t
∏

i=1

(

∫ 1

0

|φi(θ)|
pi

)1/pi

whenever p1, . . . , pt > 1 and 1
p1

+ · · ·+ 1
pt

= 1.
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Solution 9. From Question 6 we have

T (g1, g2) =

∫ 1

0

ĝ1(θ)ĝ2(−θ)1̂X(θ)dθ.

Thus, with s as in the solution to Question 8,

|T (g1, g2)| 6 sup
θ

|ĝ1(θ)|
1/s

∫ 1

0

|ĝ1(θ)|
(s−1)/s|ĝ2(θ)||1̂X(θ)|dθ.

By Hölder’s inequality with exponents (p1, p2, p3) = ( 2s
s−1 , 2, 2s),

|T (g1, g2)| 6 sup
θ

|ĝ1(θ)|
1/s

(

∫ 1

0

|ĝ1(θ)|
2
)(s−1)/2s(

∫ 1

0

|ĝ2(θ)|
2
)1/2(

∫ 1

0

|1̂X(θ)|2s
)1/2s

.

Using Parseval for the first two integrals and Question 8 for the third, we obtain

|T (g1, g2) ≪ sup
θ

|ĝ1(θ)|
1/sN3/2−1/s.

Therefore if |T (g1, g2)| > δN3/2, we have |ĝ1(θ)| ≫ δsN .
One may obtain the same bound for ĝ2 by an essentially identical argument.

�

Question 10. Outline a complete proof of the Furstenberg-Sárközy theorem
by assembling the above ingredients.

Solution 10. We use a density increment argument, modelled very closely
on the proof of Roth’s theorem in lectures. Here, briefly, are the main steps.
Suppose that A ⊂ [N ] is a set of density α and that A does not contain any pair
of elements differing by a square. Suppose that N is sufficiently large in terms
of α.

(i) By Question 7, |T (g1, g2)| ≫ α3/2N3/2, where at least one of g1, g2 is the
balanced function fA.

(ii) By Question 9, supθ |f̂A(θ)| ≫α N (in fact, ≫ αCN if one looks at the
solution to the question, but this is not important if one’s only interest is
a qualitative bound).

(iii) Now we proceed as in Proposition 7.3.1 in the notes. However, where
there we used the partition [N ] =

⋃

i Pi coming from Lemma 7.3.1, now
we use the solution to Question 5, which guarantees that all the Pi have
square common difference.

(iv) Mimicking the argument in the lecture notes (that is, the proof of Propo-
sition 7.3.1) we see that there is some progression Pi with square common

difference, and with |Pi| > ω(N) → ∞, such that |A∩Pi|
|Pi|

> α+ cαC .
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(v) Write Pi = x+ [N ′]d2, and set A′ := {n ∈ [N ′] : x+ nd2 ∈ A∩ Pi}. Then
A′ has no square common difference (or else A would), |A′ ⊂ [N ′], and
α′ := |A′|/N > α+ cαC .

Thus is the basis for a density increment argument exactly as in lectures. �

ben.green@maths.ox.ac.uk
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