C3.10 Additive and Combinatorial Number Theory, Hilary 2020 Exercises 1

Question 1. Let p = 5101 (this is a prime). Starting from the observation that $2p = 101^2 + 1$, find a representation of p as a sum of two squares.

Question 2. Show that if $n = 4^{a}(8k+7)$ then n is not a sum of three squares.

Question 3. Show that a number is the sum of two squares if and only if all primes that are $3 \pmod{4}$ occur in the prime factorisation of n with an even exponent.

Question 4. As in lectures, write $r_{k,s}(N)$ for the number of representations of N as a sum of s kth powers. Prove from first principles that there are positive constants c, C (depending on k, s but not on X) such that for sufficiently large X we have

$$cX^{s/k} \leq \sum_{N \leq X} r_{k,s}(N) \leq CX^{s/k}.$$

Explain why it follows that $G(k) \ge k$. Can one have G(k) = k for $k \ge 2$?

Question 5. Show that every positive integer is the sum of at most 53 fourth powers. *Hint: you may wish to consider the identity*

$$6(\sum_{i=1}^{\tau} a_i^2)^2 = \sum_{1 \le i < j \le 4} (a_i \pm a_j)^4,$$

where there are twelve terms on the right corresponding to the possible choices of signs \pm .

Question 6. (i) Show that $G(4) \ge 15$.

(ii) By considering numbers of the form $31 \cdot 2^{4k}$, or otherwise, show that $G(4) \ge 16$.

Question 7. Show that every integer is the sum of five cubes of integers (not necessarily positive).

Question 8. Does $r_{2,4}(N) \to \infty$ as $N \to \infty$?

Question 9. Show that every $n \leq 3^{100}$ is the sum of at most 20 cubes. (You should be able to do this with just a pocket calculator.)

ben.green@maths.ox.ac.uk