C3.10 Additive and Combinatorial Number Theory, Hilary 2020 Exercises 2

Question 1. Let $q \geqslant 1$ be an integer, and suppose that a is coprime to q. Define

$$
G_{a, q}^{*}:=\frac{1}{q} \sum_{x \in(\mathbb{Z} / q \mathbb{Z})^{*}} e\left(-a x^{k} / q\right)
$$

(Thus the definition is the same as that of the Gauss sum, only the sum over x is restricted to x coprime to q.) Show that if q is an odd prime power then

$$
\left|G_{a, q}^{*}\right| \leqslant k q^{-1 / 2} .
$$

Question 2. Let $s \geqslant 3$ be an integer. Suppose that $p \geqslant k^{(2 s-2) /(s-2)}$. Show that there are $x_{1}, \ldots, x_{s} \in \mathbb{Z} / p \mathbb{Z}$, not all zero, such that $x_{1}^{k}+\cdots+x_{s}^{k} \equiv$ $N(\bmod p)$.
Question 3. Let $k \geqslant 3$. Show that there are infinitely many q and $(a, q)=1$ such that $\left|G_{a, q}\right| \gg q^{-1 / k}$.
Question 4. Let k, s be positive integers. As in lectures, write

$$
\beta_{p}(N)=\lim _{n \rightarrow \infty} \beta_{p, n}(N),
$$

where

$$
\beta_{p, n}(N)=p^{-(s-1) n}\left\{\left(x_{1}, \ldots, x_{s}\right) \in\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{s}: x_{1}^{k}+\cdots+x_{s}^{k} \equiv N\left(\bmod p^{n}\right)\right\}
$$

Show that $\beta_{p}(N) \gg p 1$ in the following cases:
(i) $k=2, s \geqslant 5$;
(ii) $k=3, s \geqslant 9$ (Hint: you may find it helpful to use Question 2).
(You need not replicate things that were done in lectures carefully - just discuss the bits that are different.)

State, without careful proof, what conclusion follows about $\mathfrak{S}_{k, s}(N)$ in these cases.

Question 5. In this question, you may assume the Cauchy-Davenport theorem, which states that if $A, B \subseteq \mathbb{Z} / p \mathbb{Z}$ then either $A+B=\mathbb{Z} / p \mathbb{Z}$ or $|A+B| \geqslant$ $|A|+|B|-1$. (This is a result of additive combinatorics, but we won't prove it in the course; you may be interested in looking up a proof.)

Suppose that $p \geqslant 2 k$. Show that every element of $\mathbb{Z} / p \mathbb{Z}$ is a sum of $2 k k$ th powers.
Question 6. Let k be a positive integer, and let p be a prime. Suppose that $N \in \mathbb{Z} / p \mathbb{Z}$ is not $0(\bmod p)$. Write

$$
S(r)=\sum_{x=1}^{p-1} e\left(r x^{k} / p\right)
$$

(i) Show that if N is not the sum of two k th powers modulo p then

$$
\sum_{r} S(r)^{2} S(-N r)=0
$$

(ii) Show that

$$
\sum_{r}|S(r)|^{2} \leqslant k p(p-1)
$$

(iii) Conclude that if $p>C k^{4}$, for a sufficiently large absolute constant C, then every nonzero element of $\mathbb{Z} / p \mathbb{Z}$ is a sum of two k th powers. (Hint: look at the expression in (i) and consider the contributions from $r=0$ and $r \neq 0$ separately.)

Question 7. Let k be a positive integer. Let M be a real number, and define a sequence $M_{1}, M_{2}, \ldots, M_{k}$ by $M_{1}:=M, M_{i+1}:=\frac{1}{10} M_{i}^{1-1 / k}$. Show that if M is sufficiently large in terms of k then the integers $n_{1}^{k}+\cdots+n_{k}^{k}, n_{i} \in\left[M_{i}, 2 M_{i}\right]$, are all distinct.

Deduce that, for large X, the number of integers $\leqslant X$ expressible as a sum of $k k$ th powers is $\gg_{k} X^{1-(1-1 / k)^{k}}$.

