C3.10 Additive and Combinatorial Number Theory, Hilary 2020 Additional questions

Additional questions on the second half of the course for enthusiasts.

Question 1. Suppose that A is a bounded open subset of \mathbb{R}^d . Show that $\operatorname{vol}(A+A) \geq 2^d \operatorname{vol}(A)$.

Question 2. Construct a set $A \subset \{1, \ldots, 10^5\}$ with no three elements in arithmetic progression, and with |A| > 2012.

Question 3. Give examples of each of the following:

- (i) arbitrarily large sets of integers A, B such that $|A + B| \leq 1.01 |A|$ and $|A B| > |A|^{1.01}$;
- (ii) arbitrarily large sets of integers A, B such that $|A + B| \leq 1.01|A|$ but $|A + 2B| > |A|^{1.01}$;
- (iii) arbitrarily large sets of integers A, B such that $|A + B| > |A|^{1.01}$ but $|A + 2B| \le 1.01|A + B|$;

Question 4. Let *C* be an arbitrary positive real number. Show that there is $\alpha > 0$ with the following property. For arbitrarily large values of *N*, there is a set $A \subset [N]$ with $|A| \ge \alpha N$, but containing fewer than $\alpha^C N^2$ three-term arithmetic progressions.

Question 5. Let $A \subset \mathbb{R}^d$ be a finite set which is symmetric (that is, $-x \in A$ if $x \in A$), contains 0, and is not contained in any proper subspace of \mathbb{R}^d .

- (i) Explain why there is a nested sequence of subspaces $0 < V_1 < V_2 < \cdots < V_{d-1} < V_d = \mathbb{R}^d$ such that $A \cap V_{i+1} \neq A \cap V_i$ for all i < d.
- (ii) Write $A_i := 2A \cap V_i$. Show that $2A_{i+1} \subsetneq A_{i+1} + V_i$.
- (iii) For each *i*, choose $h \in 2A_{i+1} \setminus (A_{i+1} + V_i)$. Show that the sets $A + h_1, \ldots, A + h_d$ are disjoint and conclude that $|5A| \ge d|A|$.

Question 6. Suppose that $A \subset \mathbb{Z}/N\mathbb{Z}$ is an arithmetic progression. Show that

$$\sum_{\in \mathbb{Z}/N\mathbb{Z}} |\hat{1}_A(r)| \leqslant C \log N,$$

where C is an absolute constant.

Question 7. A set A in some abelian group is said to be a Sidon set if the only solutions to the equation x + y = z + w with $x, y, z, w \in A$ are the trivial solutions in which $\{w, z\} = \{x, y\}$. Show that two Sidon sets of the same size are 2-isomorphic. Show that the set $\{(x, x^2) : x \in \mathbb{Z}/p\mathbb{Z}\}$ is a Sidon set in $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$, and deduce that for any N there is a Sidon subset of $\{1, \ldots, N\}$ of size at least $c\sqrt{N}$, for some absolute constant c > 0.

Question 8. Let A be a finite subset of \mathbb{R}^n , and let $s \ge 2$ be an integer. Show that A is Freiman s-isomorphic to a subset of \mathbb{Z} .

Question 9. Suppose that $A \subset \mathbb{Z}/N\mathbb{Z}$ is a set of size $\lfloor N/2 \rfloor$, and that $|\hat{1}_A(r)| \leq N^{-c}$ whenever $r \neq 0$, where c is some absolute constant. Show that if $N > N_0(c)$ is large enough then A intersects every arithmetic progression P in $\mathbb{Z}/N\mathbb{Z}$ of length at least N/100.

Question 10. Show that every set $A \subset \mathbb{Z}$ of size *n* contains a Sidon set of size at least $c\sqrt{n}$.

Question 11. Let p be a large prime, and suppose that $A \subset \mathbb{Z}/p\mathbb{Z}$ is a set of size at most $100 \log p$. Show that A is Freiman 2-isomorphic to a set of integers.

Question 12. Given a finite set $A \subset \mathbb{Z}$, define $\dim_s(A)$ to be the dimension of the space of Frieman *s*-homomorphisms from A to \mathbb{Q} , considered as a vector space over \mathbb{Q} . Show that if A is a random subset of [n] (choosing each element independently at random with probability 1/2) then with probability tending to 1 as $n \to \infty$ we have $\dim_s(A) = 2$, for each fixed s.

Question 13. Suppose that N is a prime, and let $f : \mathbb{Z}/N\mathbb{Z} \to \{-1, 1\}$ be a function.

- (i) Show that there is at least one value of r such that the discrete Fourier coefficient $\hat{f}(r)$ has $|\hat{f}(r)| \ge N^{-1/2}$.
- (ii) Show that if f(x) = (x|N), the Legendre symbol, then $|\hat{f}(r)| = N^{-1/2}$ for all r.
- (iii) Deduce that the same is true if $f(x) = \pm (x+a|n)$, for any fixed $A \in \mathbb{Z}/N\mathbb{Z}$ and for either choice of sign \pm .
- (iv) *Prove the converse: that is, if $|\hat{f}(r)| = N^{-1/2}$ for all r, then f has the form given in (iii).

ben.green@maths.ox.ac.uk