Elliptic Curves. HT 2019/20. Sheet 1.

1. For each of the following elliptic curves, find all the points (including, as always, the point at infinity) over \mathbb{F}_{5}. Draw a complete group table in each case and describe each group as a product of cyclic groups.
(a) $Y^{2}=X^{3}+2 X$.
(b) $Y^{2}=X^{3}+1$.
2. Show that the point $(2,4)$ is of order 4 on $Y^{2}=X^{3}+4 X$, defined over \mathbb{Q}.
$\mathbf{3 (a)}$. Let $m \in \mathbb{N}$ be odd or $f_{m} \in\left(\mathbb{Q}^{*}\right)^{2}$ (or both). Show that the curve $Y^{2}=f_{m} X^{m}+f_{m-1} X^{m-1}+\ldots+f_{0}$, where all $f_{i} \in \mathbb{Q}$ and $f_{m} \neq 0$, can be birationally transformed over \mathbb{Q} to a curve of the form

$$
Y^{2}=X^{m}+g_{m-1} X^{m-1}+\ldots+g_{0}, \text { with all } g_{i} \in \mathbb{Z}
$$

(b). Birationally transform over \mathbb{Q} the curve $Y^{2}=\frac{1}{5} X^{3}+3 X^{2}+1$ to a curve of the form $Y^{2}=X^{3}+A X+B$, where $A, B \in \mathbb{Z}$.
$4(\mathbf{a})$. Let $p \equiv 2(\bmod 3)$ be prime and let $A \in \mathbb{F}_{p}^{*}$. Show that the number of points (including the point at infinity) on the curve $Y^{2}=X^{3}+A$ over \mathbb{F}_{p} is exactly $p+1$.
(b). Let $p \equiv 3(\bmod 4)$ be prime and let $B \in \mathbb{F}_{p}^{*}$. Show that the number of points (including the point at infinity) on the curve $Y^{2}=X\left(X^{2}+B\right)$ over \mathbb{F}_{p} is exactly $p+1$.
$\mathbf{5}(\mathbf{a})$. Show that the point $(2,0)$ is of order 2 on $Y^{2}=(X-2)\left(X^{2}+X+1\right)$.
(b) Find all \mathbb{Q}-rational points of order 2 and all \mathbb{C}-rational points of order 2 on each of the following elliptic curves: $Y^{2}=X\left(X^{2}-3\right), Y^{2}=X^{3}-7$ and $Y^{2}=X(X-1)(X-7)$. In each case, find the group structure (expressed as a product of cyclic groups) of the \mathbb{Q}-rational 2-torsion group (that is, the group of all \mathbb{Q}-rational points P such that $2 P=\mathbf{o}$).
6. Show that the point $(0,2)$ is of order 3 on $Y^{2}=X^{3}+4$.
$\mathbf{7 (a)}$. Let $Y^{2}=(X-\alpha)\left(X^{2}+a X+b\right)$ be an elliptic curve with $a, b, \alpha \in K$ (characteristic $\neq 2$), and $\mathbf{o}=$ point at infinity, as usual. Show that $(\alpha, 0)$ is a point of order 2. Let x^{\prime}, y^{\prime} be defined by: $\left(x^{\prime}, y^{\prime}\right)=(x, y)+(\alpha, 0)$, and define $T: K \rightarrow K: x \mapsto x^{\prime}$. Find $t_{11}, t_{12}, t_{21}, t_{22}$ in terms of a, b, α such that: $x^{\prime}=\mu(x)=\left(t_{11} x+t_{12}\right) /\left(t_{21} x+t_{22}\right)$. Check that $\mu^{2}: x \mapsto x$.
(b). Consider $Y^{2}=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)\left(X-\alpha_{3}\right)$, with $\alpha_{1}, \alpha_{2}, \alpha_{3}$ distinct, and let T_{1}, T_{2}, T_{3} be as in (a), but with α replaced by $\alpha_{1}, \alpha_{2}, \alpha_{3}$, respectively. Express each T_{i} in terms of $x, \alpha_{1}, \alpha_{2}, \alpha_{3}$. Show, directly from expressions, that T_{1}, T_{2}, T_{3} commute (i.e. $T_{1} T_{2}=T_{2} T_{1}, T_{1} T_{2}=T_{2} T_{1}$ and $T_{2} T_{3}=T_{3} T_{2}$), and that $T_{1} T_{2} T_{3}$: $x \mapsto x$. Find the fixed points of T_{1} and show that they are permuted by T_{2}.
8. Let K be any field with Char $K \neq 2,3$, and let
$\mathcal{E}: F\left(X_{0}, X_{1}, X_{2}\right)=X_{1}^{2} X_{2}-\left(X_{0}^{3}+A X_{0} X_{2}^{2}+B X_{2}^{3}\right)$, with $A, B \in K$,
be an elliptic curve (N.B. This is just the standard projective form, but with X, Y, Z replaced by $\left.X_{0}, X_{1}, X_{2}\right)$. Let P be a point on \mathcal{E}.
(a). Show that $3 P=\mathbf{o}$ iff. the tangent line to \mathcal{E} at P intersects \mathcal{E} only at P.
(b). Show that if $3 P=\mathbf{o}$ then the 3×3 matrix $\left(\partial^{2} F / \partial X_{i} \partial X_{j}(P)\right)$ has determinant 0 . [This matrix is called the Hessian matrix].
(c). Show that there are at most nine 3-torsion points over K.

