Elliptic Curves. HT 2019/20. Sheet 3.

1. Show that the curve $2Y^2 = X^4 - 17$ has points in \mathbb{R} and every \mathbb{Q}_p , but not in \mathbb{Q} .

[Hint: For showing that there are points in every \mathbb{Q}_p , it is helpful to use Theorem 1.15 (note also that the curve is birationally equivalent to $V^2 = 2X^4 - 34$, where V = 2Y). For showing there are no points in \mathbb{Q} , first show that, if there were points in \mathbb{Q} , then there would exist $r, s, t \in \mathbb{Z}$ with gcd(r, t) = 1 such that $2s^2 = t^4 - 17r^4$, and then show that any prime dividing s is a quadratic residue modulo 17].

2. Let $p \equiv 2 \mod 3$. For any $a \in \mathbb{Z}$ such that $p \not\mid a$, show that there exists $x \in \mathbb{Z}_p$ with $x^3 = a$.

3. Let K be a field, complete with respect to a non-Archimedean valuation ||, and let $R = \{x \in K : |x| \leq 1\}$. Let $f(X) \in R[x]$ have discriminant D, and let $a_0 \in R$ satisfy $|f(a_0)| < |D|^2$. Show that f(X) has a root $a \in R$.

4. Prove that, if $d \in \mathbb{Z}_p$ is non-square, then

 $|a + b\sqrt{d}|_p = |a^2 - b^2 d|_p^{1/2}$, for any $a, b \in \mathbb{Q}_p$,

defines a non-Archimedean valuation on $\mathbb{Q}_p(\sqrt{d})$ which extends the usual $||_p$ on \mathbb{Q}_p .

[Hint: First show that, for any $\alpha \in \mathbb{Q}_p(\sqrt{d})$, $|\alpha|_p \leq 1 \Rightarrow |\alpha + 1|_p \leq 1$].

5. Let $\mathcal{E} : Y^2 = X^3 + 17$, defined over \mathbb{Q} , and $\tilde{\mathcal{E}} : Y^2 = X^3 + 2$, defined over \mathbb{F}_5 . What does $(-64/25, 59/125) \in \mathcal{E}(\mathbb{Q})$ map to under the reduction map modulo 5?

6. Let $\mathcal{E}: Y^2 = X^3 + p$, defined over \mathbb{Q}_p , and $\widetilde{\mathcal{E}}: Y^2 = X^3$, defined over \mathbb{F}_p , where $p \neq 2$. Show that (0,0) on $\widetilde{\mathcal{E}}$ does not lift to a point in $\mathcal{E}(\mathbb{Q}_p)$.

7. Give examples of elliptic curves defined over \mathbb{Z}_p $(p \neq 2)$ such that $\tilde{\mathcal{E}}$, defined over \mathbb{F}_p , has:

(a). A cusp which lifts to a point in $\mathcal{E}(\mathbb{Q}_p)$.

(b). A cusp which does not lift to a point in $\mathcal{E}(\mathbb{Q}_p)$.

(c). A node which lifts to a point in $\mathcal{E}(\mathbb{Q}_p)$.

(d). A node which does not lift to a point in $\mathcal{E}(\mathbb{Q}_p)$.

8. A non-commutative formal group over a ring R is a power series $F(X, Y) \in R[[X, Y]]$ which satisfies:

 $F(X,Y) = X + Y + \text{ terms of degree} \ge 2,$

F(X, F(Y, Z)) = F(F(X, Y), Z) [associativity],

but not F(X,Y) = F(Y,X) [commutativity]. Let $R = \mathbb{F}_p[t]/I$, where $I = t^2 \mathbb{F}_p[t]$. Find a non-commutative formal group over R.