=1200

Elliptic Curves. Solutions to Sheet 4.

1. In all of the following, we use the result from lectures that (when the coef-

ficients of \mathcal{E} are in \mathbb{Z}) $\mathcal{E}_{tors}(\mathbb{Q})$ is isomorphic to a subgroup of $\mathcal{E} \mod p$, where $p \neq 2$ is a prime not dividing the discriminant. Note that this typically gives a much faster way of computing $\mathcal{E}_{tors}(\mathbb{Q})$ than the Nagell-Lutz result. N.B. (a),(b),(c) are about the level that could be asked as part of a 3-hour exam.

(a). There are the obvious points P = (0,1) of order 3 and Q = (-1,0) of order 2 in $\mathcal{E}_{tors}(\mathbb{Q})$, which generate a subgroup of $\mathcal{E}_{tors}(\mathbb{Q})$ of size 6 (namely, the 6 points mP+nQ for $0 \le m \le 2$ and $0 \le n \le 1$). Further, $\Delta = 4A^3+27B^2 = 27$, so we can reduce modulo any prime except 2 (which must always be avoided) and 3. Over \mathbb{F}_5 , there are only six points: $\mathbf{o}, (0, \pm 1), (2, \pm 3), (4, 0)$. So, we conclude that $\mathcal{E}_{tors}(\mathbf{Q})$ has size at most 6, which means that it consists of precisely the $C_6 = C_2 \times C_3$ group of points we have found already.

Note that, if P = (0, 1) and Q = (-1, 0), then the complete list of torsion points is: **o**, P = (0, 1), 2P = (0, -1), Q = (-1, 0), P + Q = (2, -3), 2P + Q = (2, 3).

(b). Here, the (birational over \mathbf{Q}) transformation $(X, Y) \mapsto (X - 1, Y)$ takes the given curve to: $Y^2 = X(X + 1)(X - 1) = X^3 - X$, which has discriminant -4, and so we can reduce modulo the prime 3 Over \mathbf{F}_3 there are the points: $\mathbf{o}, (0,0), (1,0), (2,0)$ giving that $\mathcal{E}_{tors}(\mathbf{Q})$ has size at most 4. But, in fact, $\mathcal{E}_{tors}(\mathbf{Q})$ contains $\mathbf{o}, (0,0), (-1,0), (1,0)$, which means the this $C_2 \times C_2$ group gives all of $\mathcal{E}_{tors}(\mathbf{Q})$. [Alternatively, even without using a birational transformation to the form $Y^2 = X^3 + AX + B$, we could just work entirely with the given equation of the curve, noting that the original cubic X(X - 1)(X - 2) has no repeated roots mod 3, so that $Y^2 = X(X - 1)(X - 2)$ is an elliptic curve mod 3, and then noting that the only points are: $\mathbf{o}, (0,0), (1,0), (2,0)$.]

(c). The (birational over **Q**) transformation $(X, Y) \mapsto (3^2X, 3^3Y)$ takes the given curve to: $Y^2 = X^3 + 1$ which we have already seen in part (a) to have a $C_2 \times C_3$ group as its torsion group.

Note that, if P = (0, 1/27) and Q = (-1/9, 0) then the complete list of torsion points is given by: **o**, P = (0, 1/27), 2P = (0, -1/27), Q = (-1/9, 0), P + Q = (2/9, -1/9), 2P + Q = (2/9, 1/9).

2. Let $\phi : \mathcal{C}(\mathbf{Q}) \to \mathcal{D}(\mathbf{Q})$ be the usual isogeny, which is a group homomorphism with kernel: $\mathbf{o}, (0, 0)$, and let $\hat{\phi} : \mathcal{D}(\mathbf{Q}) \to \mathcal{C}(\mathbf{Q})$ be the usual dual isogeny, which is also a group homomorphism with kernel: $\mathbf{o}, (0, 0)$. Now, let $\mathcal{C}_{\text{oddtors}}(\mathbf{Q})$ be the set of torsion elements of $\mathcal{C}(\mathbf{Q})$ which have odd order. First check that $\mathcal{C}_{\text{oddtors}}(\mathbf{Q})$ is a subgroup: (1) The identity \mathbf{o} has order 1, which is odd, so $\mathbf{o} \in \mathcal{C}_{\text{oddtors}}(\mathbf{Q}), (2)$ If P, Q have odd torsion orders m, n, respectively, then $mn(P + Q) = n(mP) + m(nQ) = \mathbf{o}$ and so the order of P + Q divides mn, giving that the order of P + Q is odd, i.e. $P + Q \in \mathcal{C}_{\text{oddtors}}(\mathbf{Q}), (3)$ The order of -P is the same as the order of -P, so $P \in \mathcal{C}_{\text{oddtors}}(\mathbf{Q}) \Rightarrow -P \in \mathcal{C}_{\text{oddtors}}(\mathbf{Q})$. Similarly define $\mathcal{D}_{\text{oddtors}}(\mathbf{Q})$, a subgroup of $\mathcal{D}(\mathbf{Q})$.

Now, consider any $P \in \mathcal{C}_{oddtors}(\mathbf{Q})$. Then P must have odd order m, say. Let $R = \phi(P)$. Then $mR = m\phi(P) = \phi(mP) = \phi(\mathbf{o}) = \mathbf{o}$, which means that the order of R divides m, and so the order of R is odd; that is: $R \in \mathcal{D}_{oddtors}(\mathbf{Q})$. Hence, ϕ gives a map from $\mathcal{C}_{oddtors}(\mathbf{Q})$ to $\mathcal{D}_{oddtors}(\mathbf{Q})$, which certainly satisfies the homomorphism property $\phi(P+Q) = \phi(P) + \phi(Q)$ for all $P, Q \in \mathcal{C}_{oddtors}(\mathbf{Q})$, since ϕ satisfies this property on the larger set $\mathcal{C}(\mathbf{Q})$. Furthermore, the kernel of ϕ : $\mathcal{C}_{oddtors}(\mathbf{Q}) \rightarrow \mathcal{D}_{oddtors}(\mathbf{Q})$ must only contain **o** [since $(0,0) \notin \mathcal{C}_{oddtors}(\mathbf{Q})$], and so $\phi : \mathcal{C}_{oddtors}(\mathbf{Q}) \to \mathcal{D}_{oddtors}(\mathbf{Q})$ is an injection [any homomorphism with trivial kernel is an injection]. We have therefore established that there is an injective homomorphism (namely ϕ) from $\mathcal{C}_{oddtors}(\mathbf{Q})$ to $\mathcal{D}_{oddtors}(\mathbf{Q})$, which implies that $\mathcal{C}_{oddtors}(\mathbf{Q})$ is isomorphic to a subgroup of $\mathcal{D}_{oddtors}(\mathbf{Q})$, namely the subgroup $\phi(\mathcal{C}_{oddtors}(\mathbf{Q}))$ [note, since $\mathcal{C}_{oddtors}(\mathbf{Q})$, $\mathcal{D}_{oddtors}(\mathbf{Q})$ are finite, it follows from this that $\#\mathcal{C}_{oddtors}(\mathbf{Q}) = \#\phi(\mathcal{C}_{oddtors}(\mathbf{Q})) \leq \#\mathcal{D}_{oddtors}(\mathbf{Q})].$ (We have just used here the general fact that if θ is a homomorphism from group G to group H, then $G/\ker\theta$ is isomorphic to $\operatorname{im}\theta$, which is the same as $\theta(G)$; when θ is injective, $\ker\theta$ contains only the identity element and $G/\ker\theta$ can be replaced by G). Applying the same argument to $\hat{\phi}$: $\mathcal{D}_{\text{oddtors}}(\mathbf{Q}) \rightarrow \mathcal{C}_{\text{oddtors}}(\mathbf{Q})$ gives that $\mathcal{D}_{oddtors}(\mathbf{Q})$ is isomorphic to a subgroup of $\mathcal{C}_{oddtors}(\mathbf{Q})$, namely $\hat{\phi}(\mathcal{D}_{oddtors}(\mathbf{Q}))$ [and consequently $\#\mathcal{D}_{oddtors}(\mathbf{Q}) = \#\phi(\mathcal{D}_{oddtors}(\mathbf{Q})) \leq \#\mathcal{C}_{oddtors}(\mathbf{Q})$]. So, all of $\mathcal{C}_{oddtors}(\mathbf{Q}), \mathcal{D}_{oddtors}(\mathbf{Q}), \hat{\phi}(\mathcal{D}_{oddtors}(\mathbf{Q})), \hat{\phi}(\mathcal{D}_{oddtors}(\mathbf{Q}))$ must have the same number of elements. Combining the fact that $\phi(\mathcal{C}_{oddtors}(\mathbf{Q})))$ is a subgroup of $\mathcal{D}_{\text{oddtors}}(\mathbf{Q})$ and the fact that $\#\phi(\mathcal{C}_{\text{oddtors}}(\mathbf{Q}))) = \#\mathcal{D}_{\text{oddtors}}(\mathbf{Q})$ gives that $\phi(\mathcal{C}_{oddtors}(\mathbf{Q}))$ must be equal to $\mathcal{D}_{oddtors}(\mathbf{Q})$. But $\mathcal{C}_{oddtors}(\mathbf{Q})$ is isomorphic to $\phi(\mathcal{C}_{oddtors}(\mathbf{Q}))$ which is equal to $\mathcal{D}_{oddtors}(\mathbf{Q})$; hence $\mathcal{C}_{oddtors}(\mathbf{Q})$ is isomorphic to $\mathcal{D}_{oddtors}(\mathbf{Q})$, as required.

3. The preimages of (0,0) under $\hat{\phi}$ are given by the points of order 2 on \mathcal{D} distinct from (0,0), namely $Q_1 = ((-a_1 + \sqrt{a_1^2 - 4b_1})/2, 0) = (a + 2\sqrt{b}, 0)$ and $Q_2 = ((-a_1 - \sqrt{a_1^2 - 4b_1})/2, 0) = (a - 2\sqrt{b}, 0)$. Recall the standard map from lectures $q : \mathcal{D}(\mathbf{Q}) \to \mathbf{Q}^*/(\mathbf{Q}^*)^2$ which takes $\mathbf{o} \to 1$, $(0,0) \to b_1$, and otherwise takes $(u,v) \to u$. We know from lectures that this map has kernel precisely $\phi(\mathfrak{C}(\mathbf{Q}))$. Now, the multiplication by 2 map on $\mathfrak{C}(\mathbf{Q})$ is $\hat{\phi} \circ \phi$, and so $(0,0) \in 2\mathfrak{C}(\mathbf{Q})$ iff either Q_1 or Q_2 is a member of $\phi(\mathfrak{C}(\mathbf{Q})) \iff q(Q_1) = 1$ or $q(Q_2) = 1 \iff a + 2\sqrt{b}$ or $a - 2\sqrt{b} = 1 \in \mathbf{Q}^*/(\mathbf{Q}^*)^2 \iff a + 2\sqrt{b}$ or $a - 2\sqrt{b} \in \mathbb{C}$

 $(\mathbf{Q}^*)^2 \iff b = m^2$ and $a + 2m = n^2$, for some $m, n \in \mathbf{Q}$; but in fact m, n must be in \mathbf{Z} since $a, b \in \mathbf{Z}$.

4.

(a). Let $\mathbb{C}: Y^2 = X(X^2 + aX + b) = X(X^2 + 2X + 3)$, where a = 2, b = 3, and isogenous curve $\mathcal{D}: Y^2 = X(X^2 + a_1X + b_1) = X(X^2 - 4X - 8)$, where $a_1 = -4, b_1 = -8$, with the usual isogeny $\phi: \mathbb{C}(\mathbf{Q}) \to \mathcal{D}(\mathbf{Q}): (x, y) \mapsto (y^2/x^2, y - 3y/x^2)$, and dual isogeny $\hat{\phi}: \mathcal{D}(\mathbf{Q}) \to \mathbb{C}(\mathbf{Q}): (u, v) \mapsto (\frac{1}{4}v^2/u^2, \frac{1}{8}(v + 8v/u^2))$.

The map $q : \mathcal{D}(\mathbf{Q})/\phi(\mathcal{C}(\mathbf{Q})) \to \mathbf{Q}^*/(\mathbf{Q}^*)^2 : (u, v) \mapsto u$, for $(u, v) \neq (0, 0)$, with $q : (0, 0) \mapsto b_1$ and $q : \mathbf{o} \mapsto 1$, is an injection with imq contained in $\{d : d \text{ is square free and } d|b_1\} = \{\pm 1, \pm 2\}$. Also, $\mathbf{o} \mapsto 1$, $(0, 0) \mapsto -8 = -2$, so that $\{1, -2\} \subset \operatorname{im} q \subset \{\pm 1, \pm 2\}$.

There is only one coset to check, represented by -1, say. We know that $-1 \in \operatorname{im} q$ iff there are integers ℓ, m, n , not all 0, and with $\operatorname{gcd}(\ell, m) = 1$, such that: $(-1) \cdot \ell^4 + a_1 \ell^2 m^2 + (b_1/(-1)) \cdot m^4 = n^2$ that is: $-\ell^4 - 4\ell^2 m^2 + 8m^4 = n^2$. Rewrite as: $-(\ell^2 + 2m^2)^2 + 12m^4 = n^2$. Reducing modulo 3 gives $-(\ell^2 + 2m^2)^2 \equiv n^2$ (modulo 3). If n were coprime to 3, then this would give: $((\ell^2 + 2m^2)/n)^2 = -1$ in \mathbf{F}_3 , contradicting the fact that -1 is not a quadratic residue modulo 3. So, 3|n and so $3|(\ell^2 + 2m^2)$ also. This means that $9|(\ell^2 + 2m^2)^2$ and $9|n^2$, which can be combined with $-(\ell^2 + 2m^2)^2 + 12m^4 = n^2$ to give: $9|12m^4$ and so 3|m. Combining 3|m with $3|(\ell^2 + 2m^2)$ gives that $3|\ell$. This contradicts the fact that $\operatorname{gcd}(\ell, m) = 1$. Hence our equation is impossible in \mathbf{Q}_3 , and so impossible in \mathbf{Q} . Hence $-1 \notin \operatorname{im} q$.

We conclude that $\operatorname{im} q = \{1, -2\}$, and so $\mathcal{D}(\mathbf{Q})/\phi(\mathcal{C}(\mathbf{Q}))$ is generated by (0, 0).

The map $\hat{q} : \mathcal{C}(\mathbf{Q})/\hat{\phi}(\mathcal{D}(\mathbf{Q})) \to \mathbf{Q}^*/(\mathbf{Q}^*)^2 : (x,y) \mapsto x$, for $(x,y) \neq (0,0)$, with $\hat{q} : (0,0) \mapsto b$ and $\hat{q} : \mathbf{o} \mapsto 1$, is an injection with im \hat{q} contained in $\{d : d \text{ is square free and } d|b\} = \{\pm 1, \pm 3\}$. Also, $\mathbf{o} \mapsto 1$ and $(0,0) \mapsto 3$, so that $\{1,3\} \subset \operatorname{im} \hat{q} \subset \{\pm 1, \pm 3\}$.

There is only one coset to check, represented by -1, say. We know that $-1 \in \operatorname{im}\hat{q}$ iff there are integers ℓ, m, n , not all 0, and with $\operatorname{gcd}(\ell, m) = 1$, such that: $(-1) \cdot \ell^4 + a\ell^2m^2 + (b/(-1)) \cdot m^4 = n^2$; that is: $-\ell^4 + 2\ell^2m^2 - 3m^4 = n^2$. Rewrite as: $-(\ell^2 - m^2)^2 - 2m^4 = n^2$. This is impossible in **R** (the left hand side is ≤ 0 and the right hand side is 0, and equality only occurs when $\ell^2 - m^2 = m^4 = n^2 = 0$, implying $\ell = m = n = 0$, which is not allowed). Hence $-1 \notin \operatorname{im}\hat{q}$.

We conclude that $\operatorname{im}\hat{q} = \{1, 3\}$, and so $\mathcal{C}(\mathbf{Q})/\hat{\phi}(\mathcal{D}(\mathbf{Q}))$ is generated by (0, 0).

Finally, since multiplication by 2 in $\mathcal{C}(\mathbf{Q})$ is $\dot{\phi} \circ \phi$, we have that $\mathcal{C}(\mathbf{Q})/2\mathcal{C}(\mathbf{Q})$ is generated by: generators for $\mathcal{C}(\mathbf{Q})/\dot{\phi}(\mathcal{D}(\mathbf{Q}))$ [namely: (0,0)] together with the images under $\dot{\phi}$ of generators for $\mathcal{D}(\mathbf{Q})/\phi(\mathcal{C}(\mathbf{Q}))$ [namely, $\dot{\phi}((0,0)) = \mathbf{o}$]. Conclusion: $\mathcal{C}(\mathbf{Q})/2\mathcal{C}(\mathbf{Q})$ is generated by (0,0), and so is isomorphic to C_2 . We also know that $\mathcal{C}(\mathbf{Q})/2\mathcal{C}(\mathbf{Q})$ is isomorphic to $\mathcal{C}_{\text{tors}}(\mathbf{Q})/2\mathcal{C}_{\text{tors}}(\mathbf{Q}) \times C_2^r$, which is isomorphic to $\mathcal{C}(\mathbf{Q})[2] \times C_2^r$, where $\mathcal{C}(\mathbf{Q})[2]$ is the 2-torsion group and r is the rank. The 2-torsion points on $\mathcal{C}: Y^2 = X(X^2 + 2X + 3)$ are \mathbf{o} together with the points of the form (x, 0), where x is a root of $X(X^2 + 2X + 3)$, that is: (0, 0), $(-1 + \sqrt{-2}, 0)$ and $(-1 + \sqrt{-2}, 0)$, of which only \mathbf{o} and (0, 0) are in $\mathcal{C}(\mathbf{Q})[2]$, giving that $\mathcal{C}(\mathbf{Q})[2]$ is isomorphic to C_2 . Combining this with the facts (already found) that $\mathcal{C}(\mathbf{Q})/2\mathcal{C}(\mathbf{Q})$ is isomorphic both to C_2 and to $\mathcal{C}(\mathbf{Q})[2] \times C_2^r$, give that $\mathcal{C}(\mathbf{Q})$ has rank 0.

(b). Let $\mathbb{C}: Y^2 = X(X^2 + aX + b) = X(X^2 + 14X + 1)$, where a = 14, b = 1, and isogenous curve $\mathcal{D}: Y^2 = X(X^2 + a_1X + b_1) = X(X^2 - 28X + 192)$, where $a_1 = -28, b_1 = 192$, with the usual isogeny $\phi: \mathbb{C}(\mathbf{Q}) \to \mathcal{D}(\mathbf{Q}): (x, y) \mapsto (y^2/x^2, y - y/x^2)$, and dual isogeny $\hat{\phi}: \mathcal{D}(\mathbf{Q}) \to \mathbb{C}(\mathbf{Q}): (u, v) \mapsto (\frac{1}{4}v^2/u^2, \frac{1}{8}(v - 192v/u^2))$. The map $q: \mathcal{D}(\mathbf{Q})/\phi(\mathbb{C}(\mathbf{Q})) \mapsto \mathbf{Q}^*/(\mathbf{Q}^*)^2: (u, v) \mapsto u$, for $(u, v) \neq (0, 0)$,

The map $q: \mathcal{D}(\mathbf{Q})/\phi(\mathcal{C}(\mathbf{Q})) \mapsto \mathbf{Q}^*/(\mathbf{Q}^*)^2 : (u, v) \mapsto u$, for $(u, v) \neq (0, 0)$, with $q: (0, 0) \mapsto b_1$ and $q: \mathbf{o} \mapsto 1$, is an injection with imq contained in $\{d: d \text{ is square free and } d|b_1\} = \{\pm 1, \pm 2, \pm 3, \pm 6\}$. Also, $\mathbf{o} \mapsto 1$, $(0, 0) \mapsto$ 192 = 3 and the obvious point $(8, 16) \mapsto 2$ [N.B. when searching for a point in $\mathcal{D}(\mathbf{Q})$ which might map to 2 under q, one need only try points with xcoordinate equal to 2 modulo squares, e.g. 2,8,1/2,18,etc, so one should find the point (8, 16) quickly; also, its a good idea at the outset just to look for "obvious" members of $\mathcal{D}(\mathbf{Q})$ with x coordinates being integers in the range from -10 to 10; doing this at the outset would also reveal the point (8, 16).] This means that $1, 3, 2 \in \text{im}q$; but imq is a group, so $6 \in \text{im}q$ also, and indeed we can just take: (0, 0) + (8, 16) = (24, -48), which maps to 6 under q. Hence, $\{1, 2, 3, 6\} \subset \text{im}q \subset \{\pm 1, \pm 2, \pm 3, \pm 6\}$.

There is only one coset to check, represented by -1, say. We know that $-1 \in \operatorname{im} q$ iff there are integers ℓ, m, n , not all 0, and with $\operatorname{gcd}(\ell, m) = 1$, such that: $(-1) \cdot \ell^4 + a_1 \ell^2 m^2 + (b_1/(-1)) \cdot m^4 = n^2$ that is: $-\ell^4 - 28\ell^2 m^2 - 192m^4 = n^2$. We can see that the LHS is ≤ 0 and the RHS is 0, and there is equality iff $\ell = m = n = 0$, a contradiction. Hence $-1 \notin \operatorname{im} q$. We conclude that $\operatorname{im} q = \{1, 2, 3, 6\}$ and that $\mathcal{D}(\mathbf{Q})/\phi(\mathcal{C}(\mathbf{Q})) = \{\mathbf{o}, (0, 0), (8, 16), (24, -48)\}$, and so $\mathcal{D}(\mathbf{Q})/\phi(\mathcal{C}(\mathbf{Q}))$ is generated by (0, 0) and (8, 16).

The map $\hat{q} : \mathcal{C}(\mathbf{Q})/\hat{\phi}(\mathcal{D}(\mathbf{Q})) \mapsto \mathbf{Q}^*/(\mathbf{Q}^*)^2 : (u,v) \mapsto u$, for $(u,v) \neq (0,0)$, with $\hat{q} : (0,0) \mapsto a_1^2 - 4b_1 = b$ and $\hat{q} : \mathbf{o} \mapsto 1$, is an injection with $\operatorname{im} \hat{q}$ contained in $\{d : d \text{ is square free and } d|b\} = \{\pm 1\}$. Also, $\mathbf{o} \mapsto 1$ and $(0,0) \mapsto 1$, so that $\{1\} \subset \operatorname{im} \hat{q} \subset \{\pm 1\}$.

There is only one coset to check, represented by -1, say. We know that $-1 \in im\hat{q}$ iff there are integers ℓ, m, n , not all 0, and with $gcd(\ell, m) = 1$, such that: $(-1) \cdot \ell^4 + a\ell^2m^2 + (b/(-1)) \cdot m^4 = n^2$; that is: $-\ell^4 + 14\ell^2m^2 - m^4 = n^2$. Rewrite as: $-(\ell^2 - 7m^2)^2 + 48m^4 = n^2$. Reducing modulo 3 gives: $-(\ell^2 - 7m^2)^2 \equiv n^2$ (modulo 3). If n were coprime to 3, then this would give: $((\ell^2 - 7m^2)/n)^2 = -1$ in \mathbf{F}_3 , contradicting the fact that -1 is not a quadratic residue modulo 3. So, 3|nand so $3|(\ell^2 - 7m^2)$, also. Hence 9 divides $(\ell^2 - 7m^2)^2$ and n^2 and so must divide $48m^4$; but 48 is only divisible by 3 (not by 9) so that 3 must divide m^4 ; hence 3 divides m. Combining this with the fact (already found) that $3|(\ell^2 - 7m^2)$ gives that $3|\ell$ also. We've shown that 3 divides all of ℓ, m, n , a contradiction. Hence $-1 \notin im\hat{q}$.

We conclude that $\operatorname{im} \hat{q} = \{1\}$, and so $\mathcal{C}(\mathbf{Q})/\hat{\phi}(\mathcal{D}(\mathbf{Q}))$ contains only **o**. [N.B. (0,0) should not also be included as a separate member of $\mathcal{C}(\mathbf{Q})/\hat{\phi}(\mathcal{D}(\mathbf{Q}))$ even though it is a rational point; (0,0) maps to 1 under \hat{q} , and so $(0,0) \in \hat{\phi}(\mathcal{D}(\mathbf{Q}))$; that is $(0,0) = \mathbf{o}$ in $\mathcal{C}(\mathbf{Q})/\hat{\phi}(\mathcal{D}(\mathbf{Q}))$; the same comment applies to the obvious point (1,4); in general, for each distinct member r of $\operatorname{im} \hat{q}$, you should only include exactly one point in $\mathcal{C}(\mathbf{Q})$ which maps to r].

Finally, since multiplication by 2 in $\mathcal{C}(\mathbf{Q})$ is $\hat{\phi} \circ \phi$, we have that $\mathcal{C}(\mathbf{Q})/2\mathcal{C}(\mathbf{Q})$ is generated by: generators for $\mathcal{C}(\mathbf{Q})/\hat{\phi}(\mathcal{D}(\mathbf{Q}))$ [namely: **o**] together with the images under $\hat{\phi}$ of generators for $\mathcal{D}(\mathbf{Q})/\phi(\mathcal{C}(\mathbf{Q}))$ [namely: **o**] together with the $\hat{\phi}((8,16)) = (1,-4)$]. Conclusion: $\mathcal{C}(\mathbf{Q})/2\mathcal{C}(\mathbf{Q})$ is generated by (1,-4), and so is the group C_2 . Now $\mathcal{C}(\mathbf{Q})/2\mathcal{C}(\mathbf{Q})$ is isomorphic to $\mathcal{C}_{\text{tors}}(\mathbf{Q})/2\mathcal{C}_{\text{tors}}(\mathbf{Q}) \times C_2^{\text{rank}}$, and $\mathcal{C}_{\text{tors}}(\mathbf{Q})/2\mathcal{C}_{\text{tors}}(\mathbf{Q})$ is isomorphic to the 2-torsion group of $\mathcal{C}_{\text{tors}}(\mathbf{Q})$ which is C_2 (consisting only of **o** and (0,0)), so that $\mathcal{C}_{\text{tors}}(\mathbf{Q})/2\mathcal{C}_{\text{tors}}(\mathbf{Q})$ is isomorphic to C_2 . Conclusion: rank = 0. [If this seems surprising, then note that (1, 4), (1, -4) are points of order 4 in $\mathcal{C}(\mathbf{Q})$].

5. We are given that A, + is an Abelian group, and that $h : A \to \mathbb{R}_{\geq 0}$ satisfies: (I) There exists a constant C, independent of P, Q, such that

 $|h(P+Q) + h(P-Q) - 2h(P) - 2h(Q)| \le C$, for all $P, Q \in A$,

(II) For any $B \in \mathbf{R}$, the set $\{P \in A : h(P) \leq B\}$ is finite.

From (I) we obtain: $h(P+Q) + h(P-Q) - 2h(P) - 2h(Q) \leq C$ and so (since $h(P-Q) \geq 0$): $h(P+Q) \leq h(P+Q) + h(P-Q) \leq 2h(P) + 2h(Q) + C \leq 2h(P) + C_1(Q)$, where $C_1(Q) = 2h(Q) + C$. Hence Property (1) in the definition of height function is satisfied.

Letting Q = P in (I), we obtain:

 $|h(2P) + h(e) - 4h(P)| \le C, \quad (*)$

where e denotes the identity element of the group A. This gives: $h(2P) + h(e) - 4h(P) \ge -C$, and so: $h(2P) \ge 4h(P) - C_2$, where $C_2 = C + h(e)$. Hence Property (2) in the definition of height function is satisfied. Furthermore, (II) is the same as Property (3) in the definition of height function. Hence all 3 required properties are satisfied, giving that h is a height function, as required.

Replacing P, Q in (I) with 2P, P, respectively, gives:

 $|h(3P) - 2h(2P) - h(P)| \le C.$

Multiplying (*) by 2 gives:

 $|2h(2P) + 2h(e) - 8h(P)| \le 2C.$

These last two equations then give:

|h(3P) - 9h(P)| = |h(3P) - 2h(2P) - h(P) + 2h(2P) + 2h(e) - 8h(P) - 2h(e)|

 $\leq |h(3P) - 2h(2P) - h(P)| + |2h(2P) + 2h(e) - 8h(P)| + 2|h(e)| \leq C_3,$ where $C_3 = 3C + 2|h(e)|$ (which is independent of P).

6. In all of the following, each step multiplies numbers $\leq N$ (followed by a possible reduction modulo N), and so we are guaranteed that everything can be done on an 9-digit calculator, since N^2 has only 9 digits.

(a). First compute (modulo N = 10481): $2^1 \equiv 2, 2^2 \equiv 4, 2^4 \equiv 16, 2^8 \equiv 256, 2^{16} \equiv 2650, 2^{32} \equiv 230$ (where each of these was obtained be squaring the previous one, and reducing modulo N). Now, we write 46 in base 2: 46 = 2 + 4 + 8 + 32 and so $2^{46} \equiv 2^2 2^4 2^8 2^{32} \equiv 4 \cdot 16 \cdot 256 \cdot 230 \equiv 64 \cdot 6475 \equiv 5641$ modulo N, so that $2^{46} - 1 \equiv 5640$ modulo N.

Now, compute gcd(5640, N) by Euclid's Algorithm: $10481 = 1 \cdot 5640 + 4841$; $5640 = 1 \cdot 4841 + 799$; $4841 = 6 \cdot 799 + 47$, $799 = 17 \cdot 47 + 0$. So, 47 is a factor of N. Compute 10481/47 = 223, giving the factorisation $N = 10481 = 47 \cdot 223$.

(b). The line tangent to \mathcal{E} at P = (5, 11) has slope y' given by $2yy' = 3x^2 - 1$, with x = 5, y = 11; that is, the slope is 74/22 = 37/11. This tangent line also goes through (5,11) and so has equation: Y = (37/11)X - 64/11. The xcoordinate of 2P is therefore $(37/11)^2 - (5+5) = 159/121$. [It will turn out not to be necessary to evaluate this mod N, although if this is done using EA, then it is 7364], and the y-coordinate is: $-((37/11) \cdot (159/121) - (64/11)) = 1861/1331$ again, although unnecessary in this example, this can be computed by EA to be: 6679 mod N], so that Q = 2P = (159/121, 1861/1331). We now wish to compute 3P = P + Q, and so again the first step is to find the line joining P and Q. This has slope given by (1861/1331 - 11)/(159/121 - 5) = 6930/2453, and so we need to compute 6930/2453 (modulo N = 10481), for which the first step is to find the inverse of 2453 (modulo N = 10481). Using Euclid's Algorithm: $10481 = 4 \cdot 2453 + 669; \ 2453 = 3 \cdot 669 + 446; \ 669 = 1 \cdot 446 + 223; \ 446 = 2 \cdot 223 + 0.$ So, we cannot find the inverse of 2453 (modulo N = 10481), and this step has given us a factor 223 of N. As before, compute 10481/223 = 47, giving the factorisation $N = 10481 = 47 \cdot 223$.

(c). Since $N = 47 \cdot 223$, we have $\phi(N) = 46 \cdot 222 = 10212$. Compute the gcd of d = 4085 and $\phi(N)$, we see: $10212 = 2 \cdot 4085 + 2042$; $4085 = 2 \cdot 2042 + 1$, so that gcd(10212, 4085) = 1. Reversing the steps: $1 = 4085 - 2 \cdot 2042 = 4085 - 2 \cdot (10212 - 2 \cdot 4085) = 5 \cdot 4085 - 2 \cdot 10212$. Hence, 5 is the inverse of 4085 modulo 10212. The decoding operation is therefore $X \mapsto X^5 \mod N$. Computing $6012^5 = (6012^2)^2 \cdot 6012 \equiv 5656^2 \cdot 6012 \equiv 2324 \cdot 6012 \equiv 715$. (modulo N = 10481). Also: $3236^5 = (3236^2)^2 \cdot 3236 \equiv 1177^2 \cdot 3236 \equiv 1837 \cdot 3236 \equiv 1805$ (modulo N = 10481). The decoded message is therefore: 0715, 1805; that is: GORE.