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Elliptic Curves. Solutions to Sheet 4.
1. In all of the following, we use the result from lectures that (when the coef-

ficients of E are in Z) Etors(Q) is isomorphic to a subgroup of Ẽ mod p, where
p 6= 2 is a prime not dividing the discriminant. Note that this typically gives
a much faster way of computing Etors(Q) than the Nagell-Lutz result. N.B.
(a),(b),(c) are about the level that could be asked as part of a 3-hour exam.
(a). There are the obvious points P = (0, 1) of order 3 and Q = (−1, 0) of
order 2 in Etors(Q), which generate a subgroup of Etors(Q) of size 6 (namely,
the 6 pointsmP+nQ for 0 ≤ m ≤ 2 and 0 ≤ n ≤ 1). Further, ∆ = 4A3+27B2 =
27, so we can reduce modulo any prime except 2 (which must always be avoided)
and 3. Over F5, there are only six points: o, (0,±1), (2,±3), (4, 0). So, we
conclude that Etors(Q) has size at most 6, which means that it consists of
precisely the C6 = C2 × C3 group of points we have found already.

Note that, if P = (0, 1) and Q = (−1, 0), then the complete list of torsion
points is: o, P = (0, 1), 2P = (0,−1), Q = (−1, 0), P + Q = (2,−3), 2P + Q =
(2, 3).
(b). Here, the (birational over Q) transformation (X,Y ) 7→ (X − 1, Y ) takes
the given curve to: Y 2 = X(X + 1)(X − 1) = X3 − X, which has discrim-
inant −4, and so we can reduce modulo the prime 3 Over F3 there are the
points: o, (0, 0), (1, 0), (2, 0) giving that Etors(Q) has size at most 4. But, in fact,
Etors(Q) contains o, (0, 0), (−1, 0), (1, 0), which means the this C2 × C2 group
gives all of Etors(Q). [Alternatively, even without using a birational transforma-
tion to the form Y 2 = X3 +AX +B, we could just work entirely with the given
equation of the curve, noting that the original cubic X(X − 1)(X − 2) has no
repeated roots mod 3, so that Y 2 = X(X − 1)(X − 2) is an elliptic curve mod 3,
and then noting that the only points are: o, (0, 0), (1, 0), (2, 0).]
(c). The (birational over Q) transformation (X,Y ) 7→ (32X, 33Y ) takes the
given curve to: Y 2 = X3 + 1 which we have already seen in part (a) to have a
C2 × C3 group as its torsion group.

Note that, if P = (0, 1/27) and Q = (−1/9, 0) then the complete list of
torsion points is given by: o, P = (0, 1/27), 2P = (0,−1/27), Q = (−1/9, 0), P+
Q = (2/9,−1/9), 2P +Q = (2/9, 1/9).
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2. Let φ : C(Q)→ D(Q) be the usual isogeny, which is a group homomorphism

with kernel: o, (0, 0), and let φ̂ : D(Q)→ C(Q) be the usual dual isogeny, which
is also a group homomorphism with kernel: o, (0, 0). Now, let Coddtors(Q) be
the set of torsion elements of C(Q) which have odd order. First check that
Coddtors(Q) is a subgroup: (1) The identity o has order 1, which is odd, so
o ∈ Coddtors(Q), (2) If P,Q have odd torsion orders m,n, respectively, then
mn(P + Q) = n(mP ) + m(nQ) = o and so the order of P + Q divides mn,
giving that the order of P +Q is odd, i.e. P +Q ∈ Coddtors(Q), (3) The order of
−P is the same as the order of −P , so P ∈ Coddtors(Q) ⇒ −P ∈ Coddtors(Q).
Similarly define Doddtors(Q), a subgroup of D(Q).

Now, consider any P ∈ Coddtors(Q). Then P must have odd order m,
say. Let R = φ(P ). Then mR = mφ(P ) = φ(mP ) = φ(o) = o, which
means that the order of R divides m, and so the order of R is odd; that is:
R ∈ Doddtors(Q). Hence, φ gives a map from Coddtors(Q) to Doddtors(Q),
which certainly satisfies the homomorphism property φ(P +Q) = φ(P ) + φ(Q)
for all P,Q ∈ Coddtors(Q), since φ satisfies this property on the larger set
C(Q). Furthermore, the kernel of φ : Coddtors(Q) → Doddtors(Q) must only
contain o [since (0, 0) 6∈ Coddtors(Q)], and so φ : Coddtors(Q) → Doddtors(Q)
is an injection [any homomorphism with trivial kernel is an injection]. We
have therefore established that there is an injective homomorphism (namely
φ) from Coddtors(Q) to Doddtors(Q), which implies that Coddtors(Q) is iso-
morphic to a subgroup of Doddtors(Q), namely the subgroup φ(Coddtors(Q)))
[note, since Coddtors(Q), Doddtors(Q) are finite, it follows from this that
#Coddtors(Q) = #φ(Coddtors(Q))) ≤ #Doddtors(Q)]. (We have just used here
the general fact that if θ is a homomorphism from group G to group H, then
G/kerθ is isomorphic to imθ, which is the same as θ(G); when θ is injective,
kerθ contains only the identity element and G/kerθ can be replaced by G).

Applying the same argument to φ̂ : Doddtors(Q) → Coddtors(Q) gives that

Doddtors(Q) is isomorphic to a subgroup of Coddtors(Q), namely φ̂(Doddtors(Q))

[and consequently #Doddtors(Q) = #φ̂(Doddtors(Q)) ≤ #Coddtors(Q)]. So,

all of Coddtors(Q),Doddtors(Q), φ̂(Doddtors(Q)), φ̂(Doddtors(Q)) must have the
same number of elements. Combining the fact that φ(Coddtors(Q))) is a sub-
group of Doddtors(Q) and the fact that #φ(Coddtors(Q))) = #Doddtors(Q) gives
that φ(Coddtors(Q))) must be equal to Doddtors(Q). But Coddtors(Q) is isomor-
phic to φ(Coddtors(Q))) which is equal to Doddtors(Q); hence Coddtors(Q) is
isomorphic to Doddtors(Q), as required.

3. The preimages of (0, 0) under φ̂ are given by the points of order 2 on D

distinct from (0, 0), namely Q1 = ((−a1 +
√
a21 − 4b1)/2, 0) = (a+ 2

√
b, 0) and

Q2 = ((−a1 −
√
a21 − 4b1)/2, 0) = (a − 2

√
b, 0). Recall the standard map from

lectures q : D(Q) → Q∗/(Q∗)2 which takes o → 1, (0, 0) → b1, and otherwise
takes (u, v) → u. We know from lectures that this map has kernel precisely

φ(C(Q)). Now, the multiplication by 2 map on C(Q) is φ̂ ◦ φ, and so (0, 0) ∈
2C(Q) iff either Q1 or Q2 is a member of φ(C(Q)) ⇐⇒ q(Q1) = 1 or q(Q2) =
1 ⇐⇒ a + 2

√
b or a − 2

√
b = 1 ∈ Q∗/(Q∗)2 ⇐⇒ a + 2

√
b or a − 2

√
b ∈
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(Q∗)2 ⇐⇒ b = m2 and a+2m = n2, for some m,n ∈ Q; but in fact m,n must
be in Z since a, b ∈ Z.

4.
(a). Let C : Y 2 = X(X2 + aX + b) = X(X2 + 2X + 3), where a = 2, b = 3, and
isogenous curve D : Y 2 = X(X2 + a1X + b1) = X(X2 − 4X − 8), where a1 =
−4, b1 = −8, with the usual isogeny φ : C(Q) → D(Q) : (x, y) 7→ (y2/x2, y −
3y/x2), and dual isogeny φ̂ : D(Q)→ C(Q) : (u, v) 7→ ( 1

4v
2/u2, 18 (v + 8v/u2)).

The map q : D(Q)/φ(C(Q)) → Q∗/(Q∗)2 : (u, v) 7→ u, for (u, v) 6= (0, 0),
with q : (0, 0) 7→ b1 and q : o 7→ 1, is an injection with imq contained in
{d : d is square free and d|b1} = {±1,±2}. Also, o 7→ 1, (0, 0) 7→ −8 = −2, so
that {1,−2} ⊂ imq ⊂ {±1,±2}.

There is only one coset to check, represented by −1, say. We know that −1 ∈
imq iff there are integers `,m, n, not all 0, and with gcd(`,m) = 1, such that:
(−1)·`4+a1`

2m2+(b1/(−1))·m4 = n2 that is: −`4−4`2m2+8m4 = n2. Rewrite
as: −(`2 + 2m2)2 + 12m4 = n2. Reducing modulo 3 gives −(`2 + 2m2)2 ≡ n2

(modulo 3). If n were coprime to 3, then this would give: ((`2 +2m2)/n)2 = −1
in F3, contradicting the fact that −1 is not a quadratic residue modulo 3. So,
3|n and so 3|(`2 + 2m2) also. This means that 9|(`2 + 2m2)2 and 9|n2, which
can be combined with −(`2 + 2m2)2 + 12m4 = n2 to give: 9|12m4 and so 3|m.
Combining 3|m with 3|(`2 + 2m2) gives that 3|`. This contradicts the fact that
gcd(`,m) = 1. Hence our equation is impossible in Q3, and so impossible in Q.
Hence −1 6∈ imq.

We conclude that imq = {1,−2}, and so D(Q)/φ(C(Q)) is generated
by (0, 0).

The map q̂ : C(Q)/φ̂(D(Q)) → Q∗/(Q∗)2 : (x, y) 7→ x, for (x, y) 6= (0, 0),
with q̂ : (0, 0) 7→ b and q̂ : o 7→ 1, is an injection with imq̂ contained in
{d : d is square free and d|b} = {±1,±3}. Also, o 7→ 1 and (0, 0) 7→ 3, so that
{1, 3} ⊂ imq̂ ⊂ {±1,±3}.

There is only one coset to check, represented by −1, say. We know that
−1 ∈ imq̂ iff there are integers `,m, n, not all 0, and with gcd(`,m) = 1, such
that: (−1) · `4 + a`2m2 + (b/(−1)) ·m4 = n2; that is: −`4 + 2`2m2 − 3m4 = n2.
Rewrite as: −(`2−m2)2−2m4 = n2. This is impossible in R (the left hand side
is ≤ 0 and the right hand side is 0, and equality only occurs when `2 −m2 =
m4 = n2 = 0, implying ` = m = n = 0, which is not allowed). Hence −1 6∈ imq̂.

We conclude that imq̂ = {1, 3}, and so C(Q)/φ̂(D(Q)) is generated by (0, 0).

Finally, since multiplication by 2 in C(Q) is φ̂◦φ, we have that C(Q)/2C(Q)

is generated by: generators for C(Q)/φ̂(D(Q)) [namely: (0, 0)] together with

the images under φ̂ of generators for D(Q)/φ(C(Q)) [namely, φ̂
(
(0, 0)

)
= o].

Conclusion: C(Q)/2C(Q) is generated by (0, 0), and so is isomorphic to C2. We
also know that C(Q)/2C(Q) is isomorphic to Ctors(Q)/2Ctors(Q)×Cr

2 , which is
isomorphic to C(Q)[2] × Cr

2 , where C(Q)[2] is the 2-torsion group and r is the
rank. The 2-torsion points on C : Y 2 = X(X2 +2X+3) are o together with the
points of the form (x, 0), where x is a root of X(X2 + 2X + 3), that is: (0, 0),
(−1 +

√
−2, 0) and (−1 +

√
−2, 0), of which only o and (0, 0) are in C(Q)[2],

giving that C(Q)[2] is isomorphic to C2. Combining this with the facts (already
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found) that C(Q)/2C(Q) is isomorphic both to C2 and to C(Q)[2] × Cr
2 , give

that C(Q) has rank 0.
(b). Let C : Y 2 = X(X2+aX+b) = X(X2+14X+1), where a = 14, b = 1, and
isogenous curve D : Y 2 = X(X2 +a1X+ b1) = X(X2−28X+192), where a1 =
−28, b1 = 192, with the usual isogeny φ : C(Q) → D(Q) : (x, y) 7→ (y2/x2, y −
y/x2), and dual isogeny φ̂ : D(Q)→ C(Q) : (u, v) 7→ ( 1

4v
2/u2, 18 (v − 192v/u2)).

The map q : D(Q)/φ(C(Q)) 7→ Q∗/(Q∗)2 : (u, v) 7→ u, for (u, v) 6= (0, 0),
with q : (0, 0) 7→ b1 and q : o 7→ 1, is an injection with imq contained in
{d : d is square free and d|b1} = {±1,±2,±3,±6}. Also, o 7→ 1, (0, 0) 7→
192 = 3 and the obvious point (8, 16) 7→ 2 [N.B. when searching for a point
in D(Q) which might map to 2 under q, one need only try points with x-
coordinate equal to 2 modulo squares, e.g. 2,8,1/2,18,etc, so one should find
the point (8, 16) quickly; also, its a good idea at the outset just to look for
“obvious” members of D(Q) with x coordinates being integers in the range
from −10 to 10; doing this at the outset would also reveal the point (8, 16).]
This means that 1, 3, 2 ∈ imq; but imq is a group, so 6 ∈ imq also, and indeed
we can just take: (0, 0) + (8, 16) = (24,−48), which maps to 6 under q. Hence,
{1, 2, 3, 6} ⊂ imq ⊂ {±1,±2,±3,±6}.

There is only one coset to check, represented by −1, say. We know that
−1 ∈ imq iff there are integers `,m, n, not all 0, and with gcd(`,m) = 1, such
that: (−1)·`4+a1`

2m2+(b1/(−1))·m4 = n2 that is: −`4−28`2m2−192m4 = n2.
We can see that the LHS is ≤ 0 and the RHS is 0, and there is equality
iff ` = m = n = 0, a contradiction. Hence −1 6∈ imq. We conclude that
imq = {1, 2, 3, 6} and that D(Q)/φ(C(Q)) = {o, (0, 0), (8, 16), (24,−48)}, and
so D(Q)/φ(C(Q)) is generated by (0, 0) and (8, 16).

The map q̂ : C(Q)/φ̂(D(Q)) 7→ Q∗/(Q∗)2 : (u, v) 7→ u, for (u, v) 6= (0, 0),
with q̂ : (0, 0) 7→ a21 − 4b1 = b and q̂ : o 7→ 1, is an injection with imq̂ contained
in {d : d is square free and d|b} = {±1}. Also, o 7→ 1 and (0, 0) 7→ 1, so that
{1} ⊂ imq̂ ⊂ {±1}.

There is only one coset to check, represented by −1, say. We know that −1 ∈
imq̂ iff there are integers `,m, n, not all 0, and with gcd(`,m) = 1, such that:
(−1) ·`4+a`2m2+(b/(−1)) ·m4 = n2; that is: −`4+14`2m2−m4 = n2. Rewrite
as: −(`2 − 7m2)2 + 48m4 = n2. Reducing modulo 3 gives: −(`2 − 7m2)2 ≡ n2

(modulo 3). If n were coprime to 3, then this would give: ((`2−7m2)/n)2 = −1
in F3, contradicting the fact that −1 is not a quadratic residue modulo 3. So, 3|n
and so 3|(`2−7m2), also. Hence 9 divides (`2−7m2)2 and n2 and so must divide
48m4; but 48 is only divisible by 3 (not by 9) so that 3 must divide m4; hence
3 divides m. Combining this with the fact (already found) that 3|(`2 − 7m2)
gives that 3|` also. We’ve shown that 3 divides all of `,m, n, a contradiction.
Hence −1 6∈ imq̂.

We conclude that imq̂ = {1}, and so C(Q)/φ̂(D(Q)) contains only o. [N.B.

(0, 0) should not also be included as a separate member of C(Q)/φ̂(D(Q)) even

though it is a rational point; (0, 0) maps to 1 under q̂, and so (0, 0) ∈ φ̂(D(Q));

that is (0, 0) = o in C(Q)/φ̂(D(Q)); the same comment applies to the obvious
point (1, 4); in general, for each distinct member r of imq̂, you should only
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include exactly one point in C(Q) which maps to r].

Finally, since multiplication by 2 in C(Q) is φ̂◦φ, we have that C(Q)/2C(Q)

is generated by: generators for C(Q)/φ̂(D(Q)) [namely: o] together with the

images under φ̂ of generators for D(Q)/φ(C(Q)) [namely, φ̂
(
(0, 0)

)
= o and

φ̂
(
(8, 16)

)
= (1,−4)]. Conclusion: C(Q)/2C(Q) is generated by (1,−4), and

so is the group C2. Now C(Q)/2C(Q) is isomorphic to Ctors(Q)/2Ctors(Q) ×
Crank

2 , and Ctors(Q)/2Ctors(Q) is isomorphic to the 2-torsion group of Ctors(Q)
which is C2 (consisting only of o and (0, 0)), so that Ctors(Q)/2Ctors(Q) is
isomorphic to C2. Conclusion: rank = 0. [If this seems surprising, then note
that (1, 4), (1,−4) are points of order 4 in C(Q)].

5. We are given that A,+ is an Abelian group, and that h : A→ R≥0 satisfies:
(I) There exists a constant C, independent of P,Q, such that
|h(P +Q) + h(P −Q)− 2h(P )− 2h(Q)| ≤ C, for all P,Q ∈ A,

(II) For any B ∈ R, the set {P ∈ A : h(P ) ≤ B} is finite.
From (I) we obtain: h(P +Q)+h(P −Q)−2h(P )−2h(Q) ≤ C and so (since

h(P − Q) ≥ 0): h(P + Q) ≤ h(P + Q) + h(P − Q) ≤ 2h(P ) + 2h(Q) + C ≤
2h(P )+C1(Q), where C1(Q) = 2h(Q)+C. Hence Property (1) in the definition
of height function is satisfied.

Letting Q = P in (I), we obtain:
|h(2P ) + h(e)− 4h(P )| ≤ C, (∗)

where e denotes the identity element of the group A. This gives: h(2P )+h(e)−
4h(P ) ≥ −C, and so: h(2P ) ≥ 4h(P ) − C2, where C2 = C + h(e). Hence
Property (2) in the definition of height function is satisfied. Furthermore, (II)
is the same as Property (3) in the definition of height function. Hence all 3
required properties are satisfied, giving that h is a height function, as required.

Replacing P,Q in (I) with 2P, P , respectively, gives:
|h(3P )− 2h(2P )− h(P )| ≤ C.

Multiplying (∗) by 2 gives:
|2h(2P ) + 2h(e)− 8h(P )| ≤ 2C.

These last two equations then give:
|h(3P )−9h(P )| = |h(3P )−2h(2P )−h(P )+2h(2P )+2h(e)−8h(P )−2h(e)|
≤ |h(3P )− 2h(2P )− h(P )|+ |2h(2P ) + 2h(e)− 8h(P )|+ 2|h(e)| ≤ C3,

where C3 = 3C + 2|h(e)| (which is independent of P ).

6. In all of the following, each step multiplies numbers ≤ N (followed by a
possible reduction modulo N), and so we are guaranteed that everything can
be done on an 9-digit calculator, since N2 has only 9 digits.
(a). First compute (modulo N = 10481): 21 ≡ 2, 22 ≡ 4, 24 ≡ 16, 28 ≡ 256,
216 ≡ 2650, 232 ≡ 230 (where each of these was obtained be squaring the
previous one, and reducing modulo N). Now, we write 46 in base 2: 46 =
2 + 4 + 8 + 32 and so 246 ≡ 222428232 ≡ 4 · 16 · 256 · 230 ≡ 64 · 6475 ≡ 5641
modulo N , so that 246 − 1 ≡ 5640 modulo N .

Now, compute gcd(5640, N) by Euclid’s Algorithm: 10481 = 1 ·5640 + 4841;
5640 = 1 · 4841 + 799; 4841 = 6 · 799 + 47, 799 = 17 · 47 + 0. So, 47 is a factor
of N . Compute 10481/47 = 223, giving the factorisation N = 10481 = 47 · 223.
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(b). The line tangent to E at P = (5, 11) has slope y′ given by 2yy′ = 3x2 − 1,
with x = 5, y = 11; that is, the slope is 74/22 = 37/11. This tangent line
also goes through (5, 11) and so has equation: Y = (37/11)X − 64/11. The x-
coordinate of 2P is therefore (37/11)2− (5 + 5) = 159/121. [It will turn out not
to be necessary to evaluate this mod N , although if this is done using EA, then it
is 7364], and the y-coordinate is: −((37/11) · (159/121)− (64/11)) = 1861/1331
[again, although unnecessary in this example, this can be computed by EA to
be: 6679 mod N], so that Q = 2P = (159/121, 1861/1331). We now wish to
compute 3P = P +Q, and so again the first step is to find the line joining P and
Q. This has slope given by (1861/1331 − 11)/(159/121 − 5) = 6930/2453, and
so we need to compute 6930/2453 (modulo N = 10481), for which the first step
is to find the inverse of 2453 (modulo N = 10481). Using Euclid’s Algorithm:
10481 = 4 ·2453+669; 2453 = 3 ·669+446; 669 = 1 ·446+223; 446 = 2 ·223+0.
So, we cannot find the inverse of 2453 (modulo N = 10481), and this step has
given us a factor 223 of N . As before, compute 10481/223 = 47, giving the
factorisation N = 10481 = 47 · 223.
(c). Since N = 47 · 223, we have φ(N) = 46 · 222 = 10212. Compute the
gcd of d = 4085 and φ(N), we see: 10212 = 2 · 4085 + 2042; 4085 = 2 ·
2042 + 1, so that gcd(10212, 4085) = 1. Reversing the steps: 1 = 4085 −
2 · 2042 = 4085 − 2 · (10212 − 2 · 4085) = 5 · 4085 − 2 · 10212. Hence, 5 is
the inverse of 4085 modulo 10212. The decoding operation is therefore X 7→
X5 mod N . Computing 60125 = (60122)2 · 6012 ≡ 56562 · 6012 ≡ 2324 · 6012 ≡
715. (modulo N = 10481). Also: 32365 = (32362)2 · 3236 ≡ 11772 · 3236 ≡
1837 · 3236 ≡ 1805 (modulo N = 10481). The decoded message is therefore:
0715, 1805; that is: GORE.
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