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Elliptic Curves. Solutions to Sheet 4.

1. In all of the following, we use the result from lectures that (when the coef-

ficients of € are in Z) €;,,4(Q) is isomorphic to a subgroup of € mod p, where
p # 2 is a prime not dividing the discriminant. Note that this typically gives
a much faster way of computing €;,.4(Q) than the Nagell-Lutz result. N.B.
(a),(b),(c) are about the level that could be asked as part of a 3-hour exam.
(a). There are the obvious points P = (0,1) of order 3 and @ = (—1,0) of
order 2 in &;,.4(Q), which generate a subgroup of &;,.4(Q) of size 6 (namely,
the 6 points mP+nQ for 0 < m < 2and 0 < n < 1). Further, A = 44342782 =
27, so we can reduce modulo any prime except 2 (which must always be avoided)
and 3. Over F5, there are only six points: o, (0,+1),(2,+£3),(4,0). So, we
conclude that &;,.4(Q) has size at most 6, which means that it consists of
precisely the Cg = Cy x C'3 group of points we have found already.

Note that, if P = (0,1) and Q = (—1,0), then the complete list of torsion
points is: o, P = (0,1),2P = (0,—1),Q = (~1,0),P+ Q = (2,-3),2P + Q =
(2,3).

(b). Here, the (birational over Q) transformation (X,Y) — (X — 1,Y) takes
the given curve to: Y2 = X(X 4+ 1)(X — 1) = X3 — X, which has discrim-
inant —4, and so we can reduce modulo the prime 3 Over F3 there are the
points: o, (0,0), (1,0), (2,0) giving that €;,,.4(Q) has size at most 4. But, in fact,
Eiors(Q) contains o, (0,0),(—1,0), (1,0), which means the this Cy x Cy group
gives all of &;..4(Q). [Alternatively, even without using a birational transforma-
tion to the form Y? = X3+ AX + B, we could just work entirely with the given
equation of the curve, noting that the original cubic X (X — 1)(X — 2) has no
repeated roots mod 3, so that Y? = X(X —1)(X —2) is an elliptic curve mod 3,
and then noting that the only points are: o,(0,0),(1,0), (2,0).]

(c). The (birational over Q) transformation (X,Y) ~ (32X,3%Y) takes the
given curve to: Y2 = X2 + 1 which we have already seen in part (a) to have a
Cy x C3 group as its torsion group.

Note that, if P = (0,1/27) and @ = (—1/9,0) then the complete list of
torsion points is given by: o, P = (0,1/27),2P = (0,—1/27),Q = (—1/9,0), P+
Q = (2/9,~1/9),2P + Q — (2/9,1/9).



2. Let ¢ : C(Q) — D(Q) be the usual isogeny, which is a group homomorphism
with kernel: o, (0,0), and let b D(Q) — C(Q) be the usual dual isogeny, which
is also a group homomorphism with kernel: o, (0,0). Now, let Cjgqiors(Q) be
the set of torsion elements of €(Q) which have odd order. First check that
Coddtors(Q) is a subgroup: (1) The identity o has order 1, which is odd, so
0 € Cugdtors(Q), (2) If P,@Q have odd torsion orders m,n, respectively, then
mn(P + Q) = n(mP) + m(n@Q) = o and so the order of P + @ divides mn,
giving that the order of P+ @ is odd, i.e. P+Q € Cogqtors(Q), (3) The order of
—P is the same as the order of —P, 50 P € Cygdtors(Q) = —P € Coddiors(Q)-
Similarly define Dgqqgiors(Q), a subgroup of D(Q).

Now, consider any P € Cugdiors(Q). Then P must have odd order m,
say. Let R = ¢(P). Then mR = m¢(P) = ¢(mP) = ¢(o) = o, which
means that the order of R divides m, and so the order of R is odd; that is:
R € Dygdiors(Q)- Hence, ¢ gives a map from C,qqiors(Q) t0 Doddtors(Q)s
which certainly satisfies the homomorphism property ¢(P + Q) = ¢(P) + ¢(Q)
for all P,Q € Cuqqtors(Q), since ¢ satisfies this property on the larger set
C(Q). Furthermore, the kernel of ¢ : Cyqgiors(Q) = Doddtors(Q) must only
contain o [since (0,0) & Coqqtors(Q)]; and so ¢ : Coqdsors(Q) = Doddtors(Q)
is an injection [any homomorphism with trivial kernel is an injection]. We
have therefore established that there is an injective homomorphism (namely
@) from Cyygiors(Q) t0 Dyddtors(Q), which implies that C,gqrors(Q) is iso-
morphic to a subgroup of D yqiors(Q), namely the subgroup ¢(Cogdtors(Q)))
[note, since Cyggtors(Q): Doddrors(Q) are finite, it follows from this that
#Coddtors(Q) = #A(Coddtors(Q))) < #Doddtors(Q)]. (We have just used here
the general fact that if 6 is a homomorphism from group G to group H, then
G /kerf) is isomorphic to im#, which is the same as 6(G); when 6 is injective,
kerf contains only the identity element and G/kerf can be replaced by G).
Applying the same argument to ¢ : Dogarors(Q) = Coddtors(Q) gives that

Doddtors(Q) is isomorphic to a SUbgrOUPAOf Coddtors(Q), namely ¢(Dyqdrors(Q))
[and consequently #Doddtors(Q2 = #¢(Doddt0§s(Q)) < #eoddtors(Q)]' So,
all of e0ddtors<Q)7 D0ddtors<(Q)7 ¢('Doddtors(Q))7 ¢(Doddtors(Q)) must have the
same number of elements. Combining the fact that ¢(Cogqiors(Q))) is a sub-
group of Doddtors((g) and the fact that #¢(eoddtors(Q))) = #Doddtors(Q) gives
that ¢(Coqdtors(Q))) must be equal to Dygqiors(Q). But Cogdiors(Q) is isomor-

phic to QS(eoddtors(Q))) which is equal to Doddtors((‘;l); hence eoddtors(Q) is
isomorphic to D gqtors(Q), as required.

3. The preimages of (0,0) under qAS are given by the points of order 2 on D
distinct from (0,0), namely Q; = ((—a; + v/a? — 4b1)/2,0) = (a + 2v/b,0) and
Q2 = ((—a; — /a3 —4b1)/2,0) = (a — 2v/b,0). Recall the standard map from
lectures ¢ : D(Q) — Q*/(Q*)? which takes o — 1, (0,0) — by, and otherwise
takes (u,v) — w. We know from lectures that this map has kernel precisely
#(€(Q)). Now, the multiplication by 2 map on €(Q) is ¢ o ¢, and so (0,0) €
2C(Q) iff either Q1 or Q2 is a member of ¢p(C(Q)) < ¢(Q1) =1 or ¢(Q2) =
1 «— a+2vbora—2vb=1¢ Q/(Q*)? < a+2Vbora—2Vb €



(Q*)? <= b=m? and a+2m = n?, for some m,n € Q; but in fact m,n must
be in Z since a,b € Z.

4.
(a). Let C: Y? = X(X? +aX +b) = X(X?+2X +3), where a = 2,b = 3, and
isogenous curve D : Y2 = X(X? + a1 X + by) = X(X? —4X — 8), where a; =
—4,b; = —8, with the usual isogeny ¢ : C(Q) — D(Q) : (x,y) — (y?/a%,y —
3y/x?), and dual isogeny ¢ : D(Q) — €(Q) : (u,v) — (302 /u?, £ (v + 8uv/u?)).

The map ¢ : D(Q)/S(E(Q) = Q°/(Q")? : (w,v) > u, for (u,0) # (0,0),
with ¢ : (0,0) — b; and ¢ : o — 1, is an injection with imq contained in
{d : d is square free and d|b1 } = {£1,£2}. Also, 0 — 1, (0,0) » —8 = =2, so
that {1, -2} C imq C {£1, +2}.

There is only one coset to check, represented by —1, say. We know that —1 €
imgq iff there are integers ¢,m,n, not all 0, and with ged(¢,m) = 1, such that:
(=1)-lr+a1£2m?+ (b1 /(—1))-m* = n? that is: —¢*—40?m?+8m* = n?. Rewrite
as: — (02 +2m?)%2 + 12m* = n?. Reducing modulo 3 gives —(¢* + 2m?)? = n?
(modulo 3). If n were coprime to 3, then this would give: ((¢242m?)/n)? = —1
in F3, contradicting the fact that —1 is not a quadratic residue modulo 3. So,
3ln and so 3|(¢% + 2m?) also. This means that 9|(¢? + 2m?)? and 9|n?, which
can be combined with —(¢2 + 2m?)? + 12m* = n? to give: 9|12m* and so 3|m.
Combining 3|m with 3|(¢2 + 2m?) gives that 3|¢. This contradicts the fact that
ged(4,m) = 1. Hence our equation is impossible in Qg, and so impossible in Q.
Hence —1 ¢ img.

We conclude that img = {1,—2}, and so D(Q)/¢(C(Q)) is generated
by (0,0).

The map 4 : €(Q)/H(D(Q) = Q°/(Q")? : (2,) — z, for (z,) # (0,0),
with ¢ : (0,0) — b and ¢ : o — 1, is an injection with im§ contained in
{d : d is square free and d|b} = {+1,+3}. Also, o — 1 and (0,0) — 3, so that
{1,3} C img C {1, +3}.

There is only one coset to check, represented by —1, say. We know that
—1 € imq iff there are integers ¢, m,n, not all 0, and with ged(¢,m) = 1, such
that: (—1)- 0% +al?m? + (b/(—1)) - m* = n?; that is: —* 4+ 20?°m? — 3m* = n?.
Rewrite as: —(£2 —m?)? —2m? = n?. This is impossible in R (the left hand side

is < 0 and the right hand side is 0, and equality only occurs when 2 — m? =

m?* =n? =0, implying £ = m = n = 0, which is not allowed). Hence —1 ¢ img.
We conclude that img = {1, 3}, and so €(Q)/¢(D(Q)) is generated by (0,0).
Finally, since multiplication by 2 in C(Q) is b o ¢, we have that C(Q)/2¢(Q)

is generated by: generators for C(Q)/d(D(Q)) [namely: (0,0)] together with

the images under ¢ of generators for D(Q)/#(C(Q)) [namely, é((0,0)) = o].

Conclusion: €(Q)/2€(Q) is generated by (0,0), and so is isomorphic to Cy. We

also know that C(Q)/2€(Q) is isomorphic to Ciys(Q)/2C;0rs(Q) x CF, which is

isomorphic to €(Q)[2] x C%, where C(Q)[2] is the 2-torsion group and r is the
rank. The 2-torsion points on € : Y2 = X (X% +2X + 3) are o together with the

points of the form (z,0), where x is a root of X(X? + 2X + 3), that is: (0,0),

(=14 +/=2,0) and (-1 + 1/=2,0), of which only o and (0,0) are in C(Q)[2],

giving that €(Q)[2] is isomorphic to Cz. Combining this with the facts (already



found) that €(Q)/2€(Q) is isomorphic both to Cy and to C(Q)[2] x C%, give
that €(Q) has rank 0.

(b). Let €: Y% = X(X?+aX+b) = X(X2+14X +1), where a = 14,b = 1, and
isogenous curve D : Y2 = X (X? + a1 X +b1) = X(X? — 28X +192), where a; =
—28,b; = 192, with the usual isogeny ¢ : C(Q) — D(Q) : (z,y) — (y?/2%,y —
y/x?), and dual isogeny ¢ : D(Q) — €(Q) : (u,v) — (1v?/u?, L(v — 192v/u?)).

The map q : D(Q)/H(E(Q)) ~ Q*/(Q")? : (u,v) > u, for (u,v) # (0,0),
with ¢ : (0,0) — b; and ¢ : o — 1, is an injection with img contained in
{d : dis square free and d|b;} = {£1,4+2,4+3,+6}. Also, o — 1, (0,0) —
192 = 3 and the obvious point (8,16) — 2 [N.B. when searching for a point
in D(Q) which might map to 2 under ¢, one need only try points with z-
coordinate equal to 2 modulo squares, e.g. 2,8,1/2,18,etc, so one should find
the point (8,16) quickly; also, its a good idea at the outset just to look for
“obvious” members of D(Q) with x coordinates being integers in the range
from —10 to 10; doing this at the outset would also reveal the point (8,16).]
This means that 1,3,2 € img; but imq is a group, so 6 € imq also, and indeed
we can just take: (0,0) + (8,16) = (24, —48), which maps to 6 under ¢q. Hence,
{1,2,3,6) C imq C {1, £2, £3, +6}.

There is only one coset to check, represented by —1, say. We know that
—1 € imgq iff there are integers £, m,n, not all 0, and with ged(¢, m) = 1, such
that: (—1)-¢*4+a102m?+(b1/(—1))-m* = n? that is: —£*—280?m?—192m* = n?.
We can see that the LHS is < 0 and the RHS is 0, and there is equality
iff £ = m = n = 0, a contradiction. Hence —1 ¢ imq. We conclude that
img = {1,2,3,6} and that D(Q)/#(C(Q)) = {0, (0,0), (8,16), (24, —48)}, and
so D(Q)/4(C(Q)) is generated by (0,0) and (8, 16).

The map ¢ : €(Q)/¢(D(Q)) — Q*/(Q*)* : (u,v) = u, for (u,v) # (0,0),
with ¢ : (0,0) + a? —4b; = b and G : o ~ 1, is an injection with img contained
in {d : d is square free and d|b} = {£1}. Also, o — 1 and (0,0) — 1, so that
{1} C img C {#1}.

There is only one coset to check, represented by —1, say. We know that —1 €
imgq iff there are integers ¢,m,n, not all 0, and with ged(¢,m) = 1, such that:
(=1)-t*+al’m?+(b/(—1))-m* = n?; that is: —¢*+1402m? —m* = n%. Rewrite
as: —(0? — 7m?)? 4+ 48m* = n?. Reducing modulo 3 gives: —(¢? — 7m?)? = n?
(modulo 3). If n were coprime to 3, then this would give: ((¢2 —7m?)/n)? = -1
in F3, contradicting the fact that —1 is not a quadratic residue modulo 3. So, 3|n
and so 3|(¢? —7m?), also. Hence 9 divides (¢2—7m?)? and n? and so must divide
48m*; but 48 is only divisible by 3 (not by 9) so that 3 must divide m*; hence
3 divides m. Combining this with the fact (already found) that 3|(¢2 — 7m?)
gives that 3|¢ also. We’ve shown that 3 divides all of £, m,n, a contradiction.
Hence —1 ¢ img. .

We conclude that img = {1}, and so €(Q)/¢(D(Q)) contains only o. [N.B.
(0,0) should not also be included as a separate member of €(Q)/(D(Q)) even
though it is a rational point; (0,0) maps to 1 under ¢, and so (0,0) € ¢(D(Q));
that is (0,0) = o in €(Q)/(D(Q)); the same comment applies to the obvious
point (1,4); in general, for each distinct member r of img, you should only



include exactly one point in €(Q) which maps to r].
Finally, since multiplication by 2 in C(Q) is ¢ o ¢, we have that C(Q)/2C(Q)
is generated by: generators for €(Q)/#(D(Q)) [namely: o] together with the

images under ¢ of generators for D(Q)/¢(C(Q)) [namely, ¢((0,0)) = o and
#((8,16)) = (1,—4)]. Conclusion: €(Q)/2€(Q) is generated by (1,—4), and
so is the group C3. Now €(Q)/2€(Q) is isomorphic to Ciyps(Q)/2Cors(Q) X
C5F and Cyiops(Q)/2C0rs(Q) is isomorphic to the 2-torsion group of G, (Q)
which is Cy (consisting only of o and (0,0)), so that Ci..4(Q)/2Ciors(Q) is
isomorphic to Cy. Conclusion: rank = 0. [If this seems surprising, then note
that (1,4), (1, —4) are points of order 4 in C(Q)].

5. We are given that A, + is an Abelian group, and that h : A — R>( satisfies:

(I) There exists a constant C, independent of P, @, such that

|h(P+ Q)+ h(P—Q)—2h(P) —2h(Q)| < C, for all P,Q € A,

(IT) For any B € R, the set {P € A: h(P) < B} is finite.

From (I) we obtain: h(P+Q)+h(P—Q)—2h(P)—2h(Q) < C and so (since
B(P = Q) = 0): h(P+Q) < h(P+ Q)+ h(P — Q) < 2h(P) + 2h(Q) + C <
2h(P)+C1(Q), where C1(Q) = 2h(Q) +C. Hence Property (1) in the definition
of height function is satisfied.

Letting @ = P in (I), we obtain:

|h(2P) + h(e) —4h(P)| < C, (%)
where e denotes the identity element of the group A. This gives: h(2P)+h(e)—
4h(P) > —C, and so: h(2P) > 4h(P) — C3, where Cy = C + h(e). Hence
Property (2) in the definition of height function is satisfied. Furthermore, (II)
is the same as Property (3) in the definition of height function. Hence all 3
required properties are satisfied, giving that A is a height function, as required.

Replacing P, @ in (I) with 2P, P, respectively, gives:

|h(3P) — 2h(2P) — h(P)| < C.
Multiplying (*) by 2 gives:
|2h(2P) + 2h(e) — 8h(P)| < 2C.
These last two equations then give:
|h(3P) —9h(P)| = |h(3P)—2h(2P)—h(P)+2h(2P)+2h(e) —8h(P) —2h(e)|
< |h(3P) — 2h(2P) — h(P)| + [2h(2P) + 2h(e) — 8h(P)| + 2|h(e)| < Cs,
where C5 = 3C + 2|h(e)| (which is independent of P).

6. In all of the following, each step multiplies numbers < N (followed by a
possible reduction modulo N), and so we are guaranteed that everything can
be done on an 9-digit calculator, since N2 has only 9 digits.
(a). First compute (modulo N = 10481): 2! = 2, 22 = 4, 2* = 16, 28 = 256,
216 = 2650, 232 = 230 (where each of these was obtained be squaring the
previous one, and reducing modulo N). Now, we write 46 in base 2: 46 =
244+ 8+ 32 and so 246 = 222428232 = 4. 16 - 256 - 230 = 64 - 6475 = 5641
modulo N, so that 246 — 1 = 5640 modulo N.

Now, compute ged(5640, N) by Euclid’s Algorithm: 10481 = 1-5640 + 4841,
5640 = 1-4841 4 799; 4841 = 6 - 799 + 47, 799 = 17 - 47+ 0. So, 47 is a factor
of N. Compute 10481/47 = 223, giving the factorisation N = 10481 = 47 - 223.



(b). The line tangent to & at P = (5,11) has slope 3’ given by 2yy’ = 32% — 1,
with = 5,y = 11; that is, the slope is 74/22 = 37/11. This tangent line
also goes through (5,11) and so has equation: Y = (37/11)X — 64/11. The z-
coordinate of 2P is therefore (37/11)? — (5+5) = 159/121. [It will turn out not
to be necessary to evaluate this mod N, although if this is done using EA, then it
is 7364], and the y-coordinate is: —((37/11)-(159/121) — (64/11)) = 1861/1331
[again, although unnecessary in this example, this can be computed by EA to
be: 6679 mod N], so that @ = 2P = (159/121,1861/1331). We now wish to
compute 3P = P+ (@, and so again the first step is to find the line joining P and
Q. This has slope given by (1861/1331 — 11)/(159/121 — 5) = 6930,/2453, and
so we need to compute 6930/2453 (modulo N = 10481), for which the first step
is to find the inverse of 2453 (modulo N = 10481). Using Euclid’s Algorithm:
10481 = 424534 669; 2453 = 3-669 4 446; 669 = 1-446+223; 446 = 2-2234-0.
So, we cannot find the inverse of 2453 (modulo N = 10481), and this step has
given us a factor 223 of N. As before, compute 10481/223 = 47, giving the
factorisation N = 10481 = 47 - 223.

(c). Since N = 47 - 223, we have ¢(N) = 46 - 222 = 10212. Compute the
ged of d = 4085 and ¢(N), we see: 10212 = 2 - 4085 + 2042; 4085 = 2 -
2042 + 1, so that ged(10212,4085) = 1. Reversing the steps: 1 = 4085 —
2-2042 = 4085 — 2 - (10212 — 2 - 4085) = 5 - 4085 — 2 - 10212. Hence, 5 is
the inverse of 4085 modulo 10212. The decoding operation is therefore X +—
X5 mod N. Computing 6012° = (60122)? - 6012 = 5656 - 6012 = 2324 - 6012 =
715. (modulo N = 10481). Also: 3236° = (3236%)% - 3236 = 11772 - 3236 =
1837 - 3236 = 1805 (modulo N = 10481). The decoded message is therefore:
0715, 1805; that is: GORE.



