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Abstract

These notes collect material seen in courses from previous years, and
extra information on concepts used in the course, and are to be used as a
reference only. The material in these notes is not examinable.

1 Groups and their actions

1.1 Subgroups
Given two subsets A,B in a group G we denote by AB the subset

{ab : a ∈ A, b ∈ B} ⊂ G.

Similarly, we will use the notation

A−1 = {a−1 : a ∈ A}.

A normal subgroup K in G is a subgroup such that for every g ∈ G, gKg−1 = K
(equivalently gK = Kg). We use the notation K C G to denote that K is a
normal subgroup in G. When H and K are subgroups of G and either H or K
is a normal subgroup of G, the subset HK ⊂ G becomes a subgroup of G.

A subgroupK of a group G is called characteristic if for every automorphism
φ : G → G, φ(K) = K. Note that every characteristic subgroup is normal
(since conjugation is an automorphism). But not every normal subgroup is
characteristic:
Example 1.1. Let G be the group (Z2,+). Since G is abelian, every subgroup
is normal. But, for instance, the subgroup Z × {0} is not invariant under the
automorphism φ : Z2 → Z2 , φ(m,n) = (n,m).
Definition 1.2. The center Z(G) of a group G is defined as the subgroup con-
sisting of elements h ∈ G so that [h, g] = 1 for each g ∈ G.

It is easy to see that the center is a characteristic subgroup of G.
The following is a basic result in group theory:

Lemma 1.3. If G is a group, N C G, and A C B < G, then BN/AN is
isomorphic to B/A(B ∩N).
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Definition 1.4. A group G is a torsion group if all its elements have finite order.
A group G is said to be without torsion (or torsion-free) if all its non-trivial

elements have infinite order.

Note that the subset TorG = {g ∈ G | g of finite order} of the group G,
sometimes called the torsion of G, is in general not a subgroup.

Definition 1.5. A group G is said to have property * virtually if some finite-index
subgroup H of G has the property *.

For instance, a group is virtually torsion-free if it contains a torsion-free
subgroup of finite index, a group is virtually abelian if it contains an abelian
subgroup of finite index and a virtually free group is a group which contains a
free subgroup of finite index.

Remark 1.6. Note that this terminology widely used in group theory is not en-
tirely consistent with the notion of virtually isomorphic groups, which involves
not only taking finite-index subgroups but also quotients by finite normal sub-
groups.

The following properties of finite-index subgroups will be useful.

Lemma 1.7. If N C H and H C G, N of finite index in H and H finitely
generated, then N contains a finite-index subgroup K which is normal in G.

Proof. By hypothesis, the quotient group F = H/N is finite. For an arbitrary
g ∈ G the conjugation by g is an automorphism of H, hence H/gNg−1 is
isomorphic to F . A homomorphism H → F is completely determined by the
images in F of elements of a finite generating set of H. Therefore there are
finitely many such homomorphisms, and finitely many possible kernels of them.
Thus, the set of subgroups gNg−1, g ∈ G , forms a finite list N,N1, .., Nk. The
subgroup K =

⋂
g∈G gNg

−1 = N ∩N1 ∩ · · · ∩Nk is normal in G and has finite
index in N , since each of the subgroups N1, . . . , Nk has finite index in H.

Proposition 1.8. Let G be a finitely generated group. Then:

1. For every n ∈ N there exist finitely many subgroups of index n in G.

2. Every finite-index subgroup H in G contains a subgroup K which is finite
index and characteristic in G.

Proof. (1) Let H 6 G be a subgroup of index n. We list the left cosets of H:

H = g1 ·H, g2 ·H, . . . , gn ·H,

and label these cosets by the numbers {1, . . . , n}. The action by left multiplica-
tion of G on the set of left cosets of H defines a homomorphism φ : G→ Sn such
that φ(G) acts transitively on {1, 2, . . . , n} and H is the inverse image under φ
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of the stabilizer of 1 in Sn. Note that there are (n− 1)! ways of labeling the left
cosets, each defining a different homomorphism with these properties.

Conversely, if φ : G→ Sn is such that φ(G) acts transitively on {1, 2, . . . , n},
then G/φ−1(Stab (1)) has cardinality n.

Since the group G is finitely generated, a homomorphism φ : G → Sn is
determined by the image of a generating finite set of G, hence there are finitely
many distinct such homomorphisms. The number of subgroups of index n in H
is equal to the number ηn of homomorphisms φ : G → Sn such that φ(G) acts
transitively on {1, 2, . . . , n}, divided by (n− 1)!.

(2) Let H be a subgroup of index n. For every automorphism ϕ : G → G,
ϕ(H) is a subgroup of index n. According to (1) the set {ϕ(H) | ϕ ∈ Aut (G)}
is finite, equal {H,H1, . . . ,Hk}. It follows that

K =
⋂

ϕ∈Aut (G)

ϕ(H) = H ∩H1 ∩ . . . ∩Hk.

Then K is a characteristic subgroup of finite index in H hence in G.

Exercise 1.9. Does the conclusion of Proposition 1.8 still hold for groups which
are not finitely generated?

Let S be a subset in a group G, and let H 6 G be a subgroup. The following
are equivalent:

1. H is the smallest subgroup of G containing S ;

2. H =
⋂
S⊂G16G

G1 ;

3. H =
{
s1s2 · · · sn : n ∈ N, si ∈ S or s−1i ∈ S for every i ∈ {1, 2, . . . , n}

}
.

The subgroup H satisfying any of the above is denoted H = 〈S〉 and is said
to be generated by S. The subset S ⊂ H is called a generating set of H. The
elements in S are called generators of H.

When S consists of a single element x, 〈S〉 is usually written as 〈x〉; it is the
cyclic subgroup consisting of powers of x.

We say that a normal subgroup K C G is normally generated by a set
R ⊂ K if K is the smallest normal subgroup of G which contains R, i.e.

K =
⋂

R⊂NCG

N .

We will use the notation
K = 〈〈R〉〉

for this subgroup. The subgroup K is also called the normal closure or the
conjugate closure of R inG. Other notations forK which appear in the literature
are RG and 〈R〉G.
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1.2 Semidirect products and short exact sequences
Let Gi, i ∈ I, be a collection of groups. The direct product of these groups,
denoted

G =
∏
i∈I

Gi

is the Cartesian product of the sets Gi with the group operation given by

(ai) · (bi) = (aibi).

Note that each group Gi is the quotient of G by the (normal) subgroup∏
j∈I\{i}

Gj .

A group G is said to split as a direct product of its normal subgroups Ni C
G, i = 1, . . . , k, if one of the following equivalent statements holds:

• G = N1 · · ·Nk and

Ni ∩N1 · . . . ·Ni−1 ·Ni+1 · . . . ·Nk = {1} for all i;

• for every element g of G there exists a unique k-tuple

(n1, . . . , nk), ni ∈ Ni, i = 1, . . . , k

such that g = n1 · · ·nk.

Then G is isomorphic to the direct product N1× . . .×Nk. Thus, finite direct
products G can be defined either extrinsically, using groups Ni as quotients of
G, or intrinsically, using normal subgroups Ni of G.

Similarly, one defines semidirect products of two groups, by taking the above
intrinsic definition and relaxing the normality assumption:
Definition 1.10. 1. (with the ambient group as the given data) A group G is

said to split as a semidirect product of two subgroups N and H, which is
denoted by G = N oH, if and only if N is a normal subgroup of G, H is
a subgroup of G, and one of the following equivalent statements holds:

• G = NH and N ∩H = {1};
• G = HN and N ∩H = {1};
• for every element g of G there exists a unique n ∈ N and h ∈ H such

that g = nh;

• for every element g of G there exists a unique n ∈ N and h ∈ H such
that g = hn;

• there exists a retractionG→ H, i.e. a homomorphism which restricts
to the identity on H, and whose kernel is N .
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Observe that the map ϕ : H → Aut (N) defined by ϕ(h)(n) = hnh−1, is
a group homomorphism.

2. (with the quotient groups as the given data) Given any two groupsN andH
(not necessarily subgroups of the same group) and a group homomorphism
ϕ : H → Aut (N), one can define a new group G = N oϕ H which is a
semidirect product of a copy of N and a copy of H in the above sense,
defined as follows. As a set, N oϕ H is defined as the cartesian product
N ×H. The binary operation ∗ on G is defined by

(n1, h1) ∗ (n2, h2) = (n1ϕ(h1)(n2), h1h2) , ∀n1, n2 ∈ N and h1, h2 ∈ H .

The group G = N oϕH is called the semidirect product of N and H with
respect to ϕ.

Remarks 1.11. 1. If a groupG is the semidirect product of a normal subgroup
N with a subgroup H in the sense of (1), then G is isomorphic to N oϕH
defined as in (2), where

ϕ(h)(n) = hnh−1 .

2. The group N oϕ H defined in (2) is a semidirect product of the normal
subgroup N1 = N × {1} and the subgroup H = {1} ×H in the sense of
(1).

3. If both N and H are normal subgroups in (1), then G is a direct product
of N and H.

If ϕ is the trivial homomorphism, sending every element of H to the
identity automorphism of N , then N oφ H is the direct product N ×H.

Here is yet another way to define semidirect products. An exact sequence is
a sequence of groups and group homomorphisms

. . . Gn−1
ϕn−1−→ Gn

ϕn−→ Gn+1 . . .

such that Imϕn−1 = Kerϕn for every n. A short exact sequence is an exact
sequence of the form:

{1} −→ N
ϕ−→ G

ψ−→ H −→ {1} . (1)

In other words, ϕ is an isomorphism from N to a normal subgroup N ′ C G and
ψ descends to an isomorphism G/N ′ ' H.
Definition 1.12. A short exact sequence splits if there exists a homomorphism
σ : H → G (called a section) such that

ψ ◦ σ = Id .
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When the sequence splits we shall sometimes write it as

1→ N → G
x→ H → 1.

Every split exact sequence determines a decomposition of G as the semidirect
product ϕ(N) o σ(H). Conversely, every semidirect product decomposition
G = N oH defines a split exact sequence, where ϕ is the identity embedding
and ψ : G→ H is the retraction.

Recall that the finite dihedral group of order 2n, denoted by D2n or I2(n),
is the group of symmetries of the regular Euclidean n-gon, i.e. the group of
isometries of the unit circle S1 ⊂ C generated by the rotation r(z) = e

2πi
n z and

the reflection s(z) = z̄. Likewise, the infinite dihedral group D∞ is the group of
isometries of Z (with the metric induced from R); the group D∞ is generated
by the translation t(x) = x+ 1 and the symmetry s(x) = −x.

Examples 1.13. 1. The dihedral group D2n is isomorphic to ZnoϕZ2, where
ϕ(1)(k) = n− k.

2. The infinite dihedral group D∞ is isomorphic to ZoϕZ2, where ϕ(1)(k) =
−k.

3. The permutation group Sn is the semidirect product of An and Z2 =
{Id, (12)}.

4. The group (Aff(R) , ◦) of affine maps f : R → R, f(x) = ax + b , with
a ∈ R∗ and b ∈ R is a semidirect product Roϕ R∗, where ϕ(a)(x) = ax.

Proposition 1.14. 1. Every isometry φ of Rn is of the form φ(x) = Ax+b,
where b ∈ Rn and A ∈ O(n).

2. The group Isom(Rn) splits as the semidirect product Rn o O(n), with the
obvious action of the orthogonal group O(n) on Rn.

Sketch of proof of (1). For every vector a ∈ Rn we denote by Ta the transla-
tion of vector a, x 7→ x + a.

If φ(0) = b, then the isometry ψ = T−b◦φ fixes the origin 0. Thus, it suffices
to prove that an isometry fixing the origin is an element of O(n). Indeed:

• an isometry of Rn preserves straight lines, because these are bi-infinite
geodesics;

• an isometry is a homogeneous map, i.e. ψ(λv) = λψ(v); this is due to the
fact that (for 0 < λ 6 1) w = λv is the unique point in Rn satisfying

d(0,w) + d(w,v) = d(0,v).

• an isometry map is an additive map, i.e. ψ(a+b) = ψ(a) +ψ(b) because
an isometry preserves parallelograms.
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Thus, ψ is a linear transformation of Rn, ψ(x) = Ax for some matrix A.
The orthogonality of the matrix A follows from the fact that the image of an
orthonormal basis under ψ is again an orthonormal basis.

Exercise 1.15. 1. Prove the statement (2) of Proposition 1.14. Note that Rn
is identified with the group of translations of the n-dimensional affine space via
the map b 7→ Tb.

2. Suppose that G is a subgroup of Isom(Rn). Is it true that G is isomorphic
to the semidirect product T oQ, where T = G ∩Rn and Q is the projection of
G to O(n)?

1.3 Group actions
Let G be a group and X be a set. An action of G on X on the left is a map

µ : G×X → X, µ(g, a) = g(a),

so that

1. µ(1, x) = x ;

2. µ(g1g2, x) = µ(g1, µ(g2, x)) for all g1, g2 ∈ G and x ∈ X .

Remark 1.16. If G is a group, then the two properties above imply that

µ(g, µ(g−1, x)) = x

for all g ∈ G and x ∈ X .
An action of G on X on the right is a map

µ : X ×G→ X, µ(a, g) = (a)g,

so that

1. µ(x, 1) = x ;

2. µ(x, g1g2) = µ(µ(x, g1), g2) for all g1, g2 ∈ G and x ∈ X .

Note that the difference between an action on the left and an action on the
right is the order in which the elements of a product act.

We often simply write gx instead of µ(g, x) or g(x) (respectively xg instead
of µ(x, g) or (x)g).

If not specified, an action of a group G on a set X is always on the left, and
it is often denoted Gy X.

An equivalent definition of a left action of a group is as a homomorphism
from G to the group Bij(X) of bijections of X.

Indeed, an action on the left

µ : G×X → X, µ(g, a) = g(a),
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defines ϕ : G→ Bij(X) by ϕ(g)(x) = µ(g, x).
Property (2) of µ implies that ϕ(g1g2) = ϕ(g1) ◦ ϕ(g2).
Conversely, given a group homomorphism ϕ : G→ Bij(X), we define

µ : G×X → X, µ(g, a) = ϕ(g)(a),

and check that it satisfies the required properties.
An action is called effective or faithful if this homomorphism is injective.

If X is a metric space, an isometric action is an action so that µ(g, ·) is an
isometry of X for each g ∈ G. In other words, an isometric action is a group
homomorphism

G→ Isom(X).

A group action G y X on a set X is called free if for every x ∈ X, the
stabilizer of x in G,

Gx = {g ∈ G : g(x) = x}

is {1}.
Given an action µ : Gy X, a map f : X → Y is called G–invariant if

f (µ(g, x)) = f(x), ∀g ∈ G, x ∈ X.

Given two actions µ : G y X and ν : G y Y , a map f : X → Y is called
G–equivariant if

f (µ(g, x)) = ν(g, f(x)), ∀g ∈ G, x ∈ X.

2 Metric spaces and graphs

2.1 General metric spaces

A metric space is a set X endowed with a function dist : X ×X → R satisfying
the following properties:

(M1) dist(x, y) > 0 for all x, y ∈ X; dist(x, y) = 0 if and only if x = y;

(M2) (Symmetry) for all x, y ∈ X, dist(y, x) = dist(x, y);

(M3) (Triangle inequality) for all x, y, z ∈ X, dist(x, z) 6 dist(x, y)+dist(y, z).

The function dist is called metric or distance function.

Notation. We will use the notation d or dist to denote the metric on a
metric space X. For x ∈ X and A ⊂ X we will use the notation dist(x,A) for
the minimal distance from x to A, i.e.

dist(x,A) = inf{d(x, a) : a ∈ A}.
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Similarly, given two subsets A,B ⊂ X, we define their minimal distance

dist(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Let (X,dist) be a metric space. We will use the notationNR(A) to denote the
open R-neighborhood of a subsetA ⊂ X, i.e. NR(A) = {x ∈ X : dist(x,A) < R}.
In particular, if A = {a} then NR(A) = B(a,R) is the open R-ball centered at
a.

We will use the notation NR(A), B(a,R) to denote the corresponding closed
neighborhoods and closed balls, defined by non-strict inequalities.

We denote by S(x, r) the sphere with center x and radius r, i.e. the set

{y ∈ X : dist(y, x) = r}.

Given two metric spaces (X,distX), (Y, distY ), a map f : X → Y is an
isometric embedding if for every x, x′ ∈ X

distY (f(x), f(x′)) = distX(x, x′) .

The image f(X) of an isometric embedding is called an isometric copy of X in
Y .

A surjective isometric embedding is called an isometry, and the metric spaces
X and Y are called isometric. A surjective map f : X → Y is called a similarity
with factor λ if for all x, x′ ∈ X,

distY (f(x), f(x′)) = λdistX(x, x′) .

The group of isometries of a metric space X is denoted Isom(X).

2.2 Graphs
An unoriented graph Γ consists of the following data:

• a set V called the set of vertices of the graph;

• a set E called the set of edges of the graph;

• a map ι called incidence map defined on E and taking values in the set of
subsets of V of cardinality one or two.

We will use the notation V = V (Γ) and E = E(Γ) for the vertex and
respectively the edge set of the graph Γ. When {u, v} = ι(e) for some edge e,
the two vertices u, v are called the endpoints of the edge e; we say that u and v
are adjacent vertices.

Note that in the definition of a graph we allow for monogons (i.e. edges
connecting a vertex to itself)1 and bigons2 (pairs of distinct edges with the

1Not to be confused with unigons, which are hybrids of unicorns and dragons.
2Also known as digons.
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same endpoints). A graph is simplicial if the corresponding cell complex is a
simplicial complex. In other words, a graph is simplicial if and only if it contains
no monogons or bigons3.

The incidence map ι defining a graph Γ is set-valued; converting ι into a
map with values in V ×V , equivalently into a pair of maps E → V is the choice
of an orientation of Γ: An orientation of Γ is a choice of two maps

o : E → V, t : E → V

such that ι(e) = {o(e), t(e)} for every e ∈ E. In view of the Axiom of Choice,
every graph can be oriented.
Definition 2.1. An oriented or directed graph is a graph Γ equipped with an
orientation. The maps o and t are called the head (or origin) map and the tail
map respectively.

We will in general denote an oriented graph by Γ, its edge-set by E, and
oriented edges by ē.
Convention 2.2. Unless we state otherwise, all graphs are assumed to be unori-
ented.

The valency (or valence, or degree) of a vertex v of a graph Γ is the number
of edges having v as an endpoint, where every monogon with both endpoints
equal to v is counted twice. The valency of Γ is the supremum of valencies of
its vertices.

Examples of graphs. Below we describe several examples of well-known
graphs.
Example 2.3 (n-rose). This graph, denoted Rn, has one vertex and n edges
connecting this vertex to itself.
Example 2.4. [i-star or i-pod] This graph, denoted Ti, has i+1 vertices, v0, v1, . . . , vi.
Two vertices are connected by a unique edge if and only if one of these vertices
is v0 and the other one is different from v0. The vertex v0 is the center of the
star and the edges are called its legs.
Example 2.5 (n-circle). This graph, denoted Cn, has n vertices which are iden-
tified with the n–th roots of unity:

vk = e2πik/n.

Two vertices u, v are connected by a unique edge if and only if they are adjacent
to each other on the unit circle:

uv−1 = e±2πi/n.

3and, naturally, no unigons, because those do not exist anyway.
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Example 2.6 (n-interval). This graph, denoted In, has the vertex set equal to
[1, n+ 1] ∩ N, where N is the set of natural numbers. Two vertices n,m of this
graph are connected by a unique edge if and only if

|n−m| = 1.

Thus, In has n edges.
Example 2.7 (Half-line). This graph, denoted H, has the vertex set equal to N
(the set of natural numbers). Two vertices n,m are connected by a unique edge
if and only if

|n−m| = 1.

The subset [n,∞) ∩ N ⊂ V (H) is the vertex set of a subgraph of H also
isomorphic to the half-line H. We will use the notation [n,∞) for this subgraph.
Example 2.8 (Line). This graph, denoted L, has the vertex set equal to Z, the
set of integers. Two vertices n,m of this graph are connected by a unique edge
if and only if

|n−m| = 1.

A morphism of graphs f : Γ → Γ′ is a pair of maps fV : V (Γ) → V (Γ′),
fE : E(Γ)→ E(Γ′) such that

ι′ ◦ fE = fV ◦ ι

where ι and ι′ are the incidence maps of the graphs Γ and Γ′ respectively.
A monomorphism of graphs is a morphism such that the corresponding maps
fV , fE are injective. The image of a monomorphism Γ→ Γ′ is a subgraph of Γ′.
In other words, a subgraph in a graph Γ′ is defined by subsets V ⊂ V (Γ′), E ⊂
E(Γ′) such that

ι′(e) ⊂ V

for every e ∈ E. A subgraph Γ′ of Γ is called full if every e = [v, w] ∈ E(Γ)
connecting vertices of Γ′, is an edge of Γ′.

A morphism f : Γ → Γ′ of graphs which is invertible (as a morphism) is
called an isomorphism of graphs: More precisely, we require that the maps fV ,
fE are invertible and the inverse maps define a morphism Γ′ → Γ. In other
words, an isomorphism of graphs is an isomorphism of the corresponding cell
complexes.
Exercise 2.9. Isomorphisms of graphs are morphisms such that the correspond-
ing vertex and edge maps are bijective.

We use the notation Aut(Γ) for the group of automorphisms of a graph Γ.

An edge connecting two vertices u, v of a graph Γ will sometimes be denoted
by [u, v]: This is unambiguous if Γ is simplicial. A finite ordered set of edges of
the form [v1, v2], [v2, v3], . . . , [vn, vn+1] is called an edge-path in Γ. The number n
is called the combinatorial length of the edge-path. An edge-path in Γ is a cycle if
vn+1 = v1. A simple cycle (or a circuit) is a cycle with all vertices vi, i = 1, . . . , n,
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pairwise distinct. In other words, a simple cycle is a subgraph isomorphic to
the n-circle for some n. A graph Γ is connected if any two vertices of Γ are
connected by an edge-path. Equivalently, the topological space underlying Γ is
path-connected.

A subgraph Γ′ ⊂ Γ is called a connected component of Γ if Γ′ is a maximal
(with respect to the inclusion) connected subgraph of Γ.

A simplicial tree is a connected graph without circuits.
Exercise 2.10. Simple cycles in a graph Γ′ are precisely subgraphs whose un-
derlying spaces are homeomorphic to the circle.

Maps of graphs. Sometimes, it is convenient to consider maps of graphs
which are not morphisms. A map of graphs f : Γ → Γ′ consists of a pair of
maps (g, h):

1. A map g : V (Γ) → V (Γ′) sending adjacent vertices to adjacent or equal
vertices;

2. A partially defined map of the edge-sets:

h : Eo → E(Γ′),

where Eo consists only of edges e of Γ whose endpoints v, w ∈ V (Γ) have distinct
images by g:

g(v) 6= g(w).

For each e ∈ Eo, we require the edge e′ = h(e) to connect the vertices g(o(e)), g(t(e)).
In other words, f amounts to a morphism of graphs Γo → Γ′, where the vertex
set of Γo is V (Γ) and the edge-set of Γo is Eo.

Collapsing a subgraph. Given a graph Γ and a (non-empty) subgraph Λ
of it, we define a new graph, Γ′ = Γ/Λ, by “collapsing” the subgraph Λ to a
vertex. Here is the precise definition. Define the partition V (Γ) = W tW c,

W = V (Λ), W c = V (Γ) \ V (Λ).

The vertex set of Γ′ equals
W c t {vo}.

Thus, we have a natural surjective map V (Γ) → V (Γ′) sending each v ∈ W c

to itself and each v ∈ W to the vertex vo. The edge-set of Γ′ is in bijective
correspondence to the set of edges in Γ which do not connect vertices of Λ to
each other. Each edge e ∈ E(Γ) connecting v ∈ W c to w ∈ W projects to an
edge, also called e, connecting v to v0. If an edge e connects two vertices in W c,
it is also retained and connects the same vertices in Γ′.

The map V (Γ)→ V (Γ′) extends to a collapsing map of graphs κ : Γ→ Γ′.
Exercise 2.11. If Γ is a tree and Λ is a subtree, then Γ′ is again a tree.
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2.3 Connected graphs as metric spaces
Let Γ be a connected graph. We introduce a metric dist on Γ as follows. We
declare every edge of Γ to be isometric to the unit interval in R. Then the
distance between any vertices of Γ is the length of the shortest edge-path con-
necting these vertices. Of course, points of the interiors of edges of Γ are not
connected by any edge-paths. Thus, we consider fractional edge-paths, where in
addition to the edges of Γ we allow intervals contained in the edges. The length
of such a fractional path is the sum of lengths of the intervals in the path. Then,
for x, y ∈ Γ,

dist(x, y) = inf
p

(length(p)) ,

where the infimum is taken over all fractional edge-paths p in Γ connecting x
to y. The metric dist is called the standard metric on Γ.
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