Geometric Group Theory

Problem Sheet 1

1. Show that the free group of rank r, F_r , has exactly $2^r - 1$ subgroups of index 2. (*hint: consider homomorphisms to* \mathbb{Z}_2).

2. i. Show that F₂ has a free subgroup of rank 3.
ii. Show that F₂ has an infinite index free subgroup of rank 2.
iii. Show that F₂ has a free subgroup of infinite rank.

3. Prove the ping-pong lemma: Let G be a group acting on a set S and let $a, b \in G$ be infinite order elements. If there are non empty disjoint subsets A, B of S such that $a^n B \subseteq A$, $b^n A \subseteq B$ for all $n \in \mathbb{Z} \setminus \{0\}$ then $\{a, b\}$ generate a free subgroup of rank 2 of G. (*hint: if* $w = a^{k_1}b^{k_2}...a^{k_n}$ then show that $wB \subseteq A$. Otherwise replace w by a conjugate and use the same argument).

4. Show that the matrices

$$\left(\begin{array}{rrr}1 & 2\\0 & 1\end{array}\right), \ \left(\begin{array}{rrr}1 & 0\\2 & 1\end{array}\right)$$

generate a free subgroup of $SL_2(\mathbb{Z})$. (*hint: apply the ping pong lemma to the usual action of* $SL_2(\mathbb{Z})$ on \mathbb{R}^2 with $A = \{(x, y) : |x| > |y|\}, B = \{(x, y) : |x| < |y|\}$).

5. i) Let $G_1 = \langle S_1 | R_1 \rangle$, $G_2 = \langle S_2 | R_2 \rangle$. Find a presentation for the direct product $G_1 \times G_2$.

ii) If $G = \langle S | R \rangle$ find a presentation for the abelianization of G.

- **6.** Show that the group $G = \langle a, b | ababa = 1 \rangle$ is abelian.
- 7. i. Show that the group

$$G = \langle x, y | x^2 = y^3 \rangle$$

is not trivial.

ii. Show that the group G is isomorphic to the group $H = \langle a, b | aba = bab \rangle$

8. Show that every finitely presented group has a finite presentation in which every relation is a word of length at most 3.